Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

677 行
29 KiB

import atexit
import glob
import logging
import numpy as np
import os
import subprocess
from typing import Dict, List, Optional, Any
from mlagents.envs.base_unity_environment import BaseUnityEnvironment
from mlagents.envs.timers import timed, hierarchical_timer
from .brain import AllBrainInfo, BrainInfo, BrainParameters
from .exception import (
UnityEnvironmentException,
UnityCommunicationException,
UnityActionException,
UnityTimeOutException,
)
from mlagents.envs.communicator_objects.unity_rl_input_pb2 import UnityRLInput
from mlagents.envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutput
from mlagents.envs.communicator_objects.agent_action_proto_pb2 import AgentActionProto
from mlagents.envs.communicator_objects.environment_parameters_proto_pb2 import (
EnvironmentParametersProto,
)
from mlagents.envs.communicator_objects.unity_rl_initialization_input_pb2 import (
UnityRLInitializationInput,
)
from mlagents.envs.communicator_objects.unity_rl_initialization_output_pb2 import (
UnityRLInitializationOutput,
)
from mlagents.envs.communicator_objects.unity_input_pb2 import UnityInput
from mlagents.envs.communicator_objects.custom_action_pb2 import CustomAction
from .rpc_communicator import RpcCommunicator
from sys import platform
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("mlagents.envs")
class UnityEnvironment(BaseUnityEnvironment):
SCALAR_ACTION_TYPES = (int, np.int32, np.int64, float, np.float32, np.float64)
SINGLE_BRAIN_ACTION_TYPES = SCALAR_ACTION_TYPES + (list, np.ndarray)
SINGLE_BRAIN_TEXT_TYPES = list
def __init__(
self,
file_name: Optional[str] = None,
worker_id: int = 0,
base_port: int = 5005,
seed: int = 0,
docker_training: bool = False,
no_graphics: bool = False,
timeout_wait: int = 30,
args: Optional[List[str]] = None,
):
"""
Starts a new unity environment and establishes a connection with the environment.
Notice: Currently communication between Unity and Python takes place over an open socket without authentication.
Ensure that the network where training takes place is secure.
:string file_name: Name of Unity environment binary.
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
:bool docker_training: Informs this class whether the process is being run within a container.
:bool no_graphics: Whether to run the Unity simulator in no-graphics mode
:int timeout_wait: Time (in seconds) to wait for connection from environment.
:bool train_mode: Whether to run in training mode, speeding up the simulation, by default.
:list args: Addition Unity command line arguments
"""
args = args or []
atexit.register(self._close)
self.port = base_port + worker_id
self._buffer_size = 12000
self._version_ = "API-10"
self._loaded = (
False
) # If true, this means the environment was successfully loaded
self.proc1 = (
None
) # The process that is started. If None, no process was started
self.communicator = self.get_communicator(worker_id, base_port, timeout_wait)
self.worker_id = worker_id
# If the environment name is None, a new environment will not be launched
# and the communicator will directly try to connect to an existing unity environment.
# If the worker-id is not 0 and the environment name is None, an error is thrown
if file_name is None and worker_id != 0:
raise UnityEnvironmentException(
"If the environment name is None, "
"the worker-id must be 0 in order to connect with the Editor."
)
if file_name is not None:
self.executable_launcher(file_name, docker_training, no_graphics, args)
else:
logger.info(
"Start training by pressing the Play button in the Unity Editor."
)
self._loaded = True
rl_init_parameters_in = UnityRLInitializationInput(seed=seed)
try:
aca_params = self.send_academy_parameters(rl_init_parameters_in)
except UnityTimeOutException:
self._close()
raise
# TODO : think of a better way to expose the academyParameters
self._unity_version = aca_params.version
if self._unity_version != self._version_:
self._close()
raise UnityEnvironmentException(
"The API number is not compatible between Unity and python. Python API : {0}, Unity API : "
"{1}.\nPlease go to https://github.com/Unity-Technologies/ml-agents to download the latest version "
"of ML-Agents.".format(self._version_, self._unity_version)
)
self._n_agents: Dict[str, int] = {}
self._is_first_message = True
self._academy_name = aca_params.name
self._log_path = aca_params.log_path
self._brains: Dict[str, BrainParameters] = {}
self._brain_names: List[str] = []
self._external_brain_names: List[str] = []
for brain_param in aca_params.brain_parameters:
self._brain_names += [brain_param.brain_name]
self._brains[brain_param.brain_name] = BrainParameters.from_proto(
brain_param
)
if brain_param.is_training:
self._external_brain_names += [brain_param.brain_name]
self._num_brains = len(self._brain_names)
self._num_external_brains = len(self._external_brain_names)
self._resetParameters = dict(aca_params.environment_parameters.float_parameters)
logger.info(
"\n'{0}' started successfully!\n{1}".format(self._academy_name, str(self))
)
if self._num_external_brains == 0:
logger.warning(
" No Learning Brains set to train found in the Unity Environment. "
"You will not be able to pass actions to your agent(s)."
)
@property
def logfile_path(self):
return self._log_path
@property
def brains(self):
return self._brains
@property
def academy_name(self):
return self._academy_name
@property
def number_brains(self):
return self._num_brains
@property
def number_external_brains(self):
return self._num_external_brains
@property
def brain_names(self):
return self._brain_names
@property
def external_brain_names(self):
return self._external_brain_names
@staticmethod
def get_communicator(worker_id, base_port, timeout_wait):
return RpcCommunicator(worker_id, base_port, timeout_wait)
@property
def external_brains(self):
external_brains = {}
for brain_name in self.external_brain_names:
external_brains[brain_name] = self.brains[brain_name]
return external_brains
@property
def reset_parameters(self):
return self._resetParameters
def executable_launcher(self, file_name, docker_training, no_graphics, args):
cwd = os.getcwd()
file_name = (
file_name.strip()
.replace(".app", "")
.replace(".exe", "")
.replace(".x86_64", "")
.replace(".x86", "")
)
true_filename = os.path.basename(os.path.normpath(file_name))
logger.debug("The true file name is {}".format(true_filename))
launch_string = None
if platform == "linux" or platform == "linux2":
candidates = glob.glob(os.path.join(cwd, file_name) + ".x86_64")
if len(candidates) == 0:
candidates = glob.glob(os.path.join(cwd, file_name) + ".x86")
if len(candidates) == 0:
candidates = glob.glob(file_name + ".x86_64")
if len(candidates) == 0:
candidates = glob.glob(file_name + ".x86")
if len(candidates) > 0:
launch_string = candidates[0]
elif platform == "darwin":
candidates = glob.glob(
os.path.join(
cwd, file_name + ".app", "Contents", "MacOS", true_filename
)
)
if len(candidates) == 0:
candidates = glob.glob(
os.path.join(file_name + ".app", "Contents", "MacOS", true_filename)
)
if len(candidates) == 0:
candidates = glob.glob(
os.path.join(cwd, file_name + ".app", "Contents", "MacOS", "*")
)
if len(candidates) == 0:
candidates = glob.glob(
os.path.join(file_name + ".app", "Contents", "MacOS", "*")
)
if len(candidates) > 0:
launch_string = candidates[0]
elif platform == "win32":
candidates = glob.glob(os.path.join(cwd, file_name + ".exe"))
if len(candidates) == 0:
candidates = glob.glob(file_name + ".exe")
if len(candidates) > 0:
launch_string = candidates[0]
if launch_string is None:
self._close()
raise UnityEnvironmentException(
"Couldn't launch the {0} environment. "
"Provided filename does not match any environments.".format(
true_filename
)
)
else:
logger.debug("This is the launch string {}".format(launch_string))
# Launch Unity environment
if not docker_training:
subprocess_args = [launch_string]
if no_graphics:
subprocess_args += ["-nographics", "-batchmode"]
subprocess_args += ["--port", str(self.port)]
subprocess_args += args
try:
self.proc1 = subprocess.Popen(subprocess_args)
except PermissionError as perm:
# This is likely due to missing read or execute permissions on file.
raise UnityEnvironmentException(
f"Error when trying to launch environment - make sure "
f"permissions are set correctly. For example "
f'"chmod -R 755 {launch_string}"'
) from perm
else:
"""
Comments for future maintenance:
xvfb-run is a wrapper around Xvfb, a virtual xserver where all
rendering is done to virtual memory. It automatically creates a
new virtual server automatically picking a server number `auto-servernum`.
The server is passed the arguments using `server-args`, we are telling
Xvfb to create Screen number 0 with width 640, height 480 and depth 24 bits.
Note that 640 X 480 are the default width and height. The main reason for
us to add this is because we'd like to change the depth from the default
of 8 bits to 24.
Unfortunately, this means that we will need to pass the arguments through
a shell which is why we set `shell=True`. Now, this adds its own
complications. E.g SIGINT can bounce off the shell and not get propagated
to the child processes. This is why we add `exec`, so that the shell gets
launched, the arguments are passed to `xvfb-run`. `exec` replaces the shell
we created with `xvfb`.
"""
docker_ls = (
"exec xvfb-run --auto-servernum"
" --server-args='-screen 0 640x480x24'"
" {0} --port {1}"
).format(launch_string, str(self.port))
self.proc1 = subprocess.Popen(
docker_ls,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True,
)
def __str__(self):
return (
"""Unity Academy name: {0}
Number of Brains: {1}
Number of Training Brains : {2}
Reset Parameters :\n\t\t{3}""".format(
self._academy_name,
str(self._num_brains),
str(self._num_external_brains),
"\n\t\t".join(
[
str(k) + " -> " + str(self._resetParameters[k])
for k in self._resetParameters
]
),
)
+ "\n"
+ "\n".join([str(self._brains[b]) for b in self._brains])
)
def reset(
self,
config: Dict = None,
train_mode: bool = True,
custom_reset_parameters: Any = None,
) -> AllBrainInfo:
"""
Sends a signal to reset the unity environment.
:return: AllBrainInfo : A data structure corresponding to the initial reset state of the environment.
"""
if config is None:
config = self._resetParameters
elif config:
logger.info(
"Academy reset with parameters: {0}".format(
", ".join([str(x) + " -> " + str(config[x]) for x in config])
)
)
for k in config:
if (k in self._resetParameters) and (isinstance(config[k], (int, float))):
self._resetParameters[k] = config[k]
elif not isinstance(config[k], (int, float)):
raise UnityEnvironmentException(
"The value for parameter '{0}'' must be an Integer or a Float.".format(
k
)
)
else:
raise UnityEnvironmentException(
"The parameter '{0}' is not a valid parameter.".format(k)
)
if self._loaded:
outputs = self.communicator.exchange(
self._generate_reset_input(train_mode, config, custom_reset_parameters)
)
if outputs is None:
raise UnityCommunicationException("Communicator has stopped.")
rl_output = outputs.rl_output
s = self._get_state(rl_output)
for _b in self._external_brain_names:
self._n_agents[_b] = len(s[_b].agents)
self._is_first_message = False
return s
else:
raise UnityEnvironmentException("No Unity environment is loaded.")
@timed
def step(
self,
vector_action: Dict[str, np.ndarray] = None,
memory: Optional[Dict[str, np.ndarray]] = None,
text_action: Optional[Dict[str, List[str]]] = None,
value: Optional[Dict[str, np.ndarray]] = None,
custom_action: Dict[str, Any] = None,
) -> AllBrainInfo:
"""
Provides the environment with an action, moves the environment dynamics forward accordingly,
and returns observation, state, and reward information to the agent.
:param value: Value estimates provided by agents.
:param vector_action: Agent's vector action. Can be a scalar or vector of int/floats.
:param memory: Vector corresponding to memory used for recurrent policies.
:param text_action: Text action to send to environment for.
:param custom_action: Optional instance of a CustomAction protobuf message.
:return: AllBrainInfo : A Data structure corresponding to the new state of the environment.
"""
if self._is_first_message:
return self.reset()
vector_action = {} if vector_action is None else vector_action
memory = {} if memory is None else memory
text_action = {} if text_action is None else text_action
value = {} if value is None else value
custom_action = {} if custom_action is None else custom_action
# Check that environment is loaded, and episode is currently running.
if not self._loaded:
raise UnityEnvironmentException("No Unity environment is loaded.")
else:
if isinstance(vector_action, self.SINGLE_BRAIN_ACTION_TYPES):
if self._num_external_brains == 1:
vector_action = {self._external_brain_names[0]: vector_action}
elif self._num_external_brains > 1:
raise UnityActionException(
"You have {0} brains, you need to feed a dictionary of brain names a keys, "
"and vector_actions as values".format(self._num_brains)
)
else:
raise UnityActionException(
"There are no external brains in the environment, "
"step cannot take a vector_action input"
)
if isinstance(memory, self.SINGLE_BRAIN_ACTION_TYPES):
if self._num_external_brains == 1:
memory = {self._external_brain_names[0]: memory}
elif self._num_external_brains > 1:
raise UnityActionException(
"You have {0} brains, you need to feed a dictionary of brain names as keys "
"and memories as values".format(self._num_brains)
)
else:
raise UnityActionException(
"There are no external brains in the environment, "
"step cannot take a memory input"
)
if isinstance(text_action, self.SINGLE_BRAIN_TEXT_TYPES):
if self._num_external_brains == 1:
text_action = {self._external_brain_names[0]: text_action}
elif self._num_external_brains > 1:
raise UnityActionException(
"You have {0} brains, you need to feed a dictionary of brain names as keys "
"and text_actions as values".format(self._num_brains)
)
else:
raise UnityActionException(
"There are no external brains in the environment, "
"step cannot take a value input"
)
if isinstance(value, self.SINGLE_BRAIN_ACTION_TYPES):
if self._num_external_brains == 1:
value = {self._external_brain_names[0]: value}
elif self._num_external_brains > 1:
raise UnityActionException(
"You have {0} brains, you need to feed a dictionary of brain names as keys "
"and state/action value estimates as values".format(
self._num_brains
)
)
else:
raise UnityActionException(
"There are no external brains in the environment, "
"step cannot take a value input"
)
if isinstance(custom_action, CustomAction):
if self._num_external_brains == 1:
custom_action = {self._external_brain_names[0]: custom_action}
elif self._num_external_brains > 1:
raise UnityActionException(
"You have {0} brains, you need to feed a dictionary of brain names as keys "
"and CustomAction instances as values".format(self._num_brains)
)
else:
raise UnityActionException(
"There are no external brains in the environment, "
"step cannot take a custom_action input"
)
for brain_name in (
list(vector_action.keys())
+ list(memory.keys())
+ list(text_action.keys())
):
if brain_name not in self._external_brain_names:
raise UnityActionException(
"The name {0} does not correspond to an external brain "
"in the environment".format(brain_name)
)
for brain_name in self._external_brain_names:
n_agent = self._n_agents[brain_name]
if brain_name not in vector_action:
if self._brains[brain_name].vector_action_space_type == "discrete":
vector_action[brain_name] = (
[0.0]
* n_agent
* len(self._brains[brain_name].vector_action_space_size)
)
else:
vector_action[brain_name] = (
[0.0]
* n_agent
* self._brains[brain_name].vector_action_space_size[0]
)
else:
vector_action[brain_name] = self._flatten(vector_action[brain_name])
if brain_name not in memory:
memory[brain_name] = []
else:
if memory[brain_name] is None:
memory[brain_name] = []
else:
memory[brain_name] = self._flatten(memory[brain_name])
if brain_name not in text_action:
text_action[brain_name] = [""] * n_agent
else:
if text_action[brain_name] is None:
text_action[brain_name] = [""] * n_agent
if brain_name not in custom_action:
custom_action[brain_name] = [None] * n_agent
else:
if custom_action[brain_name] is None:
custom_action[brain_name] = [None] * n_agent
if isinstance(custom_action[brain_name], CustomAction):
custom_action[brain_name] = [
custom_action[brain_name]
] * n_agent
number_text_actions = len(text_action[brain_name])
if not ((number_text_actions == n_agent) or number_text_actions == 0):
raise UnityActionException(
"There was a mismatch between the provided text_action and "
"the environment's expectation: "
"The brain {0} expected {1} text_action but was given {2}".format(
brain_name, n_agent, number_text_actions
)
)
discrete_check = (
self._brains[brain_name].vector_action_space_type == "discrete"
)
expected_discrete_size = n_agent * len(
self._brains[brain_name].vector_action_space_size
)
continuous_check = (
self._brains[brain_name].vector_action_space_type == "continuous"
)
expected_continuous_size = (
self._brains[brain_name].vector_action_space_size[0] * n_agent
)
if not (
(
discrete_check
and len(vector_action[brain_name]) == expected_discrete_size
)
or (
continuous_check
and len(vector_action[brain_name]) == expected_continuous_size
)
):
raise UnityActionException(
"There was a mismatch between the provided action and "
"the environment's expectation: "
"The brain {0} expected {1} {2} action(s), but was provided: {3}".format(
brain_name,
str(expected_discrete_size)
if discrete_check
else str(expected_continuous_size),
self._brains[brain_name].vector_action_space_type,
str(vector_action[brain_name]),
)
)
step_input = self._generate_step_input(
vector_action, memory, text_action, value, custom_action
)
with hierarchical_timer("communicator.exchange"):
outputs = self.communicator.exchange(step_input)
if outputs is None:
raise UnityCommunicationException("Communicator has stopped.")
rl_output = outputs.rl_output
state = self._get_state(rl_output)
for _b in self._external_brain_names:
self._n_agents[_b] = len(state[_b].agents)
return state
def close(self):
"""
Sends a shutdown signal to the unity environment, and closes the socket connection.
"""
if self._loaded:
self._close()
else:
raise UnityEnvironmentException("No Unity environment is loaded.")
def _close(self):
self._loaded = False
self.communicator.close()
if self.proc1 is not None:
self.proc1.kill()
@classmethod
def _flatten(cls, arr: Any) -> List[float]:
"""
Converts arrays to list.
:param arr: numpy vector.
:return: flattened list.
"""
if isinstance(arr, cls.SCALAR_ACTION_TYPES):
arr = [float(arr)]
if isinstance(arr, np.ndarray):
arr = arr.tolist()
if len(arr) == 0:
return arr
if isinstance(arr[0], np.ndarray):
arr = [item for sublist in arr for item in sublist.tolist()]
if isinstance(arr[0], list):
arr = [item for sublist in arr for item in sublist]
arr = [float(x) for x in arr]
return arr
def _get_state(self, output: UnityRLOutput) -> AllBrainInfo:
"""
Collects experience information from all external brains in environment at current step.
:return: a dictionary of BrainInfo objects.
"""
_data = {}
for brain_name in output.agentInfos:
agent_info_list = output.agentInfos[brain_name].value
_data[brain_name] = BrainInfo.from_agent_proto(
self.worker_id, agent_info_list, self.brains[brain_name]
)
return _data
@timed
def _generate_step_input(
self,
vector_action: Dict[str, np.ndarray],
memory: Dict[str, np.ndarray],
text_action: Dict[str, list],
value: Dict[str, np.ndarray],
custom_action: Dict[str, list],
) -> UnityInput:
rl_in = UnityRLInput()
for b in vector_action:
n_agents = self._n_agents[b]
if n_agents == 0:
continue
_a_s = len(vector_action[b]) // n_agents
_m_s = len(memory[b]) // n_agents
for i in range(n_agents):
action = AgentActionProto(
vector_actions=vector_action[b][i * _a_s : (i + 1) * _a_s],
memories=memory[b][i * _m_s : (i + 1) * _m_s],
text_actions=text_action[b][i],
custom_action=custom_action[b][i],
)
if b in value:
if value[b] is not None:
action.value = float(value[b][i])
rl_in.agent_actions[b].value.extend([action])
rl_in.command = 0
return self.wrap_unity_input(rl_in)
def _generate_reset_input(
self, training: bool, config: Dict, custom_reset_parameters: Any
) -> UnityInput:
rl_in = UnityRLInput()
rl_in.is_training = training
rl_in.environment_parameters.CopyFrom(EnvironmentParametersProto())
for key in config:
rl_in.environment_parameters.float_parameters[key] = config[key]
if custom_reset_parameters is not None:
rl_in.environment_parameters.custom_reset_parameters.CopyFrom(
custom_reset_parameters
)
rl_in.command = 1
return self.wrap_unity_input(rl_in)
def send_academy_parameters(
self, init_parameters: UnityRLInitializationInput
) -> UnityRLInitializationOutput:
inputs = UnityInput()
inputs.rl_initialization_input.CopyFrom(init_parameters)
return self.communicator.initialize(inputs).rl_initialization_output
@staticmethod
def wrap_unity_input(rl_input: UnityRLInput) -> UnityInput:
result = UnityInput()
result.rl_input.CopyFrom(rl_input)
return result