您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
347 行
13 KiB
347 行
13 KiB
import io
|
|
import numpy as np
|
|
import pytest
|
|
from typing import List, Tuple
|
|
|
|
from mlagents_envs.communicator_objects.agent_info_pb2 import AgentInfoProto
|
|
from mlagents_envs.communicator_objects.observation_pb2 import (
|
|
ObservationProto,
|
|
NONE,
|
|
PNG,
|
|
)
|
|
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
|
|
from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import (
|
|
AgentInfoActionPairProto,
|
|
)
|
|
from mlagents_envs.communicator_objects.agent_action_pb2 import AgentActionProto
|
|
from mlagents_envs.base_env import (
|
|
BehaviorSpec,
|
|
ActionType,
|
|
DecisionSteps,
|
|
TerminalSteps,
|
|
)
|
|
from mlagents_envs.exception import UnityObservationException
|
|
from mlagents_envs.rpc_utils import (
|
|
behavior_spec_from_proto,
|
|
process_pixels,
|
|
_process_visual_observation,
|
|
_process_vector_observation,
|
|
steps_from_proto,
|
|
)
|
|
from PIL import Image
|
|
|
|
|
|
def generate_list_agent_proto(
|
|
n_agent: int,
|
|
shape: List[Tuple[int]],
|
|
infinite_rewards: bool = False,
|
|
nan_observations: bool = False,
|
|
) -> List[AgentInfoProto]:
|
|
result = []
|
|
for agent_index in range(n_agent):
|
|
ap = AgentInfoProto()
|
|
ap.reward = float("inf") if infinite_rewards else agent_index
|
|
ap.done = agent_index % 2 == 0
|
|
ap.max_step_reached = agent_index % 4 == 0
|
|
ap.id = agent_index
|
|
ap.action_mask.extend([True, False] * 5)
|
|
obs_proto_list = []
|
|
for obs_index in range(len(shape)):
|
|
obs_proto = ObservationProto()
|
|
obs_proto.shape.extend(list(shape[obs_index]))
|
|
obs_proto.compression_type = NONE
|
|
obs_proto.float_data.data.extend(
|
|
([float("nan")] if nan_observations else [0.1])
|
|
* np.prod(shape[obs_index])
|
|
)
|
|
obs_proto_list.append(obs_proto)
|
|
ap.observations.extend(obs_proto_list)
|
|
result.append(ap)
|
|
return result
|
|
|
|
|
|
def generate_compressed_data(in_array: np.ndarray) -> bytes:
|
|
image_arr = (in_array * 255).astype(np.uint8)
|
|
im = Image.fromarray(image_arr, "RGB")
|
|
byteIO = io.BytesIO()
|
|
im.save(byteIO, format="PNG")
|
|
return byteIO.getvalue()
|
|
|
|
|
|
def generate_compressed_proto_obs(in_array: np.ndarray) -> ObservationProto:
|
|
obs_proto = ObservationProto()
|
|
obs_proto.compressed_data = generate_compressed_data(in_array)
|
|
obs_proto.compression_type = PNG
|
|
obs_proto.shape.extend(in_array.shape)
|
|
return obs_proto
|
|
|
|
|
|
def generate_uncompressed_proto_obs(in_array: np.ndarray) -> ObservationProto:
|
|
obs_proto = ObservationProto()
|
|
obs_proto.float_data.data.extend(in_array.flatten().tolist())
|
|
obs_proto.compression_type = NONE
|
|
obs_proto.shape.extend(in_array.shape)
|
|
return obs_proto
|
|
|
|
|
|
def proto_from_steps(
|
|
decision_steps: DecisionSteps, terminal_steps: TerminalSteps
|
|
) -> List[AgentInfoProto]:
|
|
agent_info_protos: List[AgentInfoProto] = []
|
|
# Take care of the DecisionSteps first
|
|
for agent_id in decision_steps.agent_id:
|
|
agent_id_index = decision_steps.agent_id_to_index[agent_id]
|
|
reward = decision_steps.reward[agent_id_index]
|
|
done = False
|
|
max_step_reached = False
|
|
agent_mask = None
|
|
if decision_steps.action_mask is not None:
|
|
agent_mask = [] # type: ignore
|
|
for _branch in decision_steps.action_mask:
|
|
agent_mask = np.concatenate(
|
|
(agent_mask, _branch[agent_id_index, :]), axis=0
|
|
)
|
|
observations: List[ObservationProto] = []
|
|
for all_observations_of_type in decision_steps.obs:
|
|
observation = all_observations_of_type[agent_id_index]
|
|
if len(observation.shape) == 3:
|
|
observations.append(generate_uncompressed_proto_obs(observation))
|
|
else:
|
|
observations.append(
|
|
ObservationProto(
|
|
float_data=ObservationProto.FloatData(data=observation),
|
|
shape=[len(observation)],
|
|
compression_type=NONE,
|
|
)
|
|
)
|
|
agent_info_proto = AgentInfoProto(
|
|
reward=reward,
|
|
done=done,
|
|
id=agent_id,
|
|
max_step_reached=max_step_reached,
|
|
action_mask=agent_mask,
|
|
observations=observations,
|
|
)
|
|
agent_info_protos.append(agent_info_proto)
|
|
# Take care of the TerminalSteps second
|
|
for agent_id in terminal_steps.agent_id:
|
|
agent_id_index = terminal_steps.agent_id_to_index[agent_id]
|
|
reward = terminal_steps.reward[agent_id_index]
|
|
done = True
|
|
max_step_reached = terminal_steps.max_step[agent_id_index]
|
|
|
|
final_observations: List[ObservationProto] = []
|
|
for all_observations_of_type in terminal_steps.obs:
|
|
observation = all_observations_of_type[agent_id_index]
|
|
if len(observation.shape) == 3:
|
|
final_observations.append(generate_uncompressed_proto_obs(observation))
|
|
else:
|
|
final_observations.append(
|
|
ObservationProto(
|
|
float_data=ObservationProto.FloatData(data=observation),
|
|
shape=[len(observation)],
|
|
compression_type=NONE,
|
|
)
|
|
)
|
|
agent_info_proto = AgentInfoProto(
|
|
reward=reward,
|
|
done=done,
|
|
id=agent_id,
|
|
max_step_reached=max_step_reached,
|
|
action_mask=None,
|
|
observations=final_observations,
|
|
)
|
|
agent_info_protos.append(agent_info_proto)
|
|
|
|
return agent_info_protos
|
|
|
|
|
|
# The arguments here are the DecisionSteps, TerminalSteps and actions for a single agent name
|
|
def proto_from_steps_and_action(
|
|
decision_steps: DecisionSteps, terminal_steps: TerminalSteps, actions: np.ndarray
|
|
) -> List[AgentInfoActionPairProto]:
|
|
agent_info_protos = proto_from_steps(decision_steps, terminal_steps)
|
|
agent_action_protos = [
|
|
AgentActionProto(vector_actions=action) for action in actions
|
|
]
|
|
agent_info_action_pair_protos = [
|
|
AgentInfoActionPairProto(agent_info=agent_info_proto, action_info=action_proto)
|
|
for agent_info_proto, action_proto in zip(
|
|
agent_info_protos, agent_action_protos
|
|
)
|
|
]
|
|
return agent_info_action_pair_protos
|
|
|
|
|
|
def test_process_pixels():
|
|
in_array = np.random.rand(128, 64, 3)
|
|
byte_arr = generate_compressed_data(in_array)
|
|
out_array = process_pixels(byte_arr, False)
|
|
assert out_array.shape == (128, 64, 3)
|
|
assert np.sum(in_array - out_array) / np.prod(in_array.shape) < 0.01
|
|
assert (in_array - out_array < 0.01).all()
|
|
|
|
|
|
def test_process_pixels_gray():
|
|
in_array = np.random.rand(128, 64, 3)
|
|
byte_arr = generate_compressed_data(in_array)
|
|
out_array = process_pixels(byte_arr, True)
|
|
assert out_array.shape == (128, 64, 1)
|
|
assert np.mean(in_array.mean(axis=2, keepdims=True) - out_array) < 0.01
|
|
assert (in_array.mean(axis=2, keepdims=True) - out_array < 0.01).all()
|
|
|
|
|
|
def test_vector_observation():
|
|
n_agents = 10
|
|
shapes = [(3,), (4,)]
|
|
list_proto = generate_list_agent_proto(n_agents, shapes)
|
|
for obs_index, shape in enumerate(shapes):
|
|
arr = _process_vector_observation(obs_index, shape, list_proto)
|
|
assert list(arr.shape) == ([n_agents] + list(shape))
|
|
assert (np.abs(arr - 0.1) < 0.01).all()
|
|
|
|
|
|
def test_process_visual_observation():
|
|
in_array_1 = np.random.rand(128, 64, 3)
|
|
proto_obs_1 = generate_compressed_proto_obs(in_array_1)
|
|
in_array_2 = np.random.rand(128, 64, 3)
|
|
proto_obs_2 = generate_uncompressed_proto_obs(in_array_2)
|
|
ap1 = AgentInfoProto()
|
|
ap1.observations.extend([proto_obs_1])
|
|
ap2 = AgentInfoProto()
|
|
ap2.observations.extend([proto_obs_2])
|
|
ap_list = [ap1, ap2]
|
|
arr = _process_visual_observation(0, (128, 64, 3), ap_list)
|
|
assert list(arr.shape) == [2, 128, 64, 3]
|
|
assert (arr[0, :, :, :] - in_array_1 < 0.01).all()
|
|
assert (arr[1, :, :, :] - in_array_2 < 0.01).all()
|
|
|
|
|
|
def test_process_visual_observation_bad_shape():
|
|
in_array_1 = np.random.rand(128, 64, 3)
|
|
proto_obs_1 = generate_compressed_proto_obs(in_array_1)
|
|
ap1 = AgentInfoProto()
|
|
ap1.observations.extend([proto_obs_1])
|
|
ap_list = [ap1]
|
|
with pytest.raises(UnityObservationException):
|
|
_process_visual_observation(0, (128, 42, 3), ap_list)
|
|
|
|
|
|
def test_batched_step_result_from_proto():
|
|
n_agents = 10
|
|
shapes = [(3,), (4,)]
|
|
spec = BehaviorSpec(shapes, ActionType.CONTINUOUS, 3)
|
|
ap_list = generate_list_agent_proto(n_agents, shapes)
|
|
decision_steps, terminal_steps = steps_from_proto(ap_list, spec)
|
|
for agent_id in range(n_agents):
|
|
if agent_id in decision_steps:
|
|
# we set the reward equal to the agent id in generate_list_agent_proto
|
|
assert decision_steps[agent_id].reward == agent_id
|
|
elif agent_id in terminal_steps:
|
|
assert terminal_steps[agent_id].reward == agent_id
|
|
else:
|
|
raise Exception("Missing agent from the steps")
|
|
# We sort the AgentId since they are split between DecisionSteps and TerminalSteps
|
|
combined_agent_id = list(decision_steps.agent_id) + list(terminal_steps.agent_id)
|
|
combined_agent_id.sort()
|
|
assert combined_agent_id == list(range(n_agents))
|
|
for agent_id in range(n_agents):
|
|
assert (agent_id in terminal_steps) == (agent_id % 2 == 0)
|
|
if agent_id in terminal_steps:
|
|
assert terminal_steps[agent_id].max_step == (agent_id % 4 == 0)
|
|
assert decision_steps.obs[0].shape[1] == shapes[0][0]
|
|
assert decision_steps.obs[1].shape[1] == shapes[1][0]
|
|
assert terminal_steps.obs[0].shape[1] == shapes[0][0]
|
|
assert terminal_steps.obs[1].shape[1] == shapes[1][0]
|
|
|
|
|
|
def test_action_masking_discrete():
|
|
n_agents = 10
|
|
shapes = [(3,), (4,)]
|
|
behavior_spec = BehaviorSpec(shapes, ActionType.DISCRETE, (7, 3))
|
|
ap_list = generate_list_agent_proto(n_agents, shapes)
|
|
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
|
|
masks = decision_steps.action_mask
|
|
assert isinstance(masks, list)
|
|
assert len(masks) == 2
|
|
assert masks[0].shape == (n_agents / 2, 7) # half agents are done
|
|
assert masks[1].shape == (n_agents / 2, 3) # half agents are done
|
|
assert masks[0][0, 0]
|
|
assert not masks[1][0, 0]
|
|
assert masks[1][0, 1]
|
|
|
|
|
|
def test_action_masking_discrete_1():
|
|
n_agents = 10
|
|
shapes = [(3,), (4,)]
|
|
behavior_spec = BehaviorSpec(shapes, ActionType.DISCRETE, (10,))
|
|
ap_list = generate_list_agent_proto(n_agents, shapes)
|
|
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
|
|
masks = decision_steps.action_mask
|
|
assert isinstance(masks, list)
|
|
assert len(masks) == 1
|
|
assert masks[0].shape == (n_agents / 2, 10)
|
|
assert masks[0][0, 0]
|
|
|
|
|
|
def test_action_masking_discrete_2():
|
|
n_agents = 10
|
|
shapes = [(3,), (4,)]
|
|
behavior_spec = BehaviorSpec(shapes, ActionType.DISCRETE, (2, 2, 6))
|
|
ap_list = generate_list_agent_proto(n_agents, shapes)
|
|
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
|
|
masks = decision_steps.action_mask
|
|
assert isinstance(masks, list)
|
|
assert len(masks) == 3
|
|
assert masks[0].shape == (n_agents / 2, 2)
|
|
assert masks[1].shape == (n_agents / 2, 2)
|
|
assert masks[2].shape == (n_agents / 2, 6)
|
|
assert masks[0][0, 0]
|
|
|
|
|
|
def test_action_masking_continuous():
|
|
n_agents = 10
|
|
shapes = [(3,), (4,)]
|
|
behavior_spec = BehaviorSpec(shapes, ActionType.CONTINUOUS, 10)
|
|
ap_list = generate_list_agent_proto(n_agents, shapes)
|
|
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
|
|
masks = decision_steps.action_mask
|
|
assert masks is None
|
|
|
|
|
|
def test_agent_behavior_spec_from_proto():
|
|
agent_proto = generate_list_agent_proto(1, [(3,), (4,)])[0]
|
|
bp = BrainParametersProto()
|
|
bp.vector_action_size.extend([5, 4])
|
|
bp.vector_action_space_type = 0
|
|
behavior_spec = behavior_spec_from_proto(bp, agent_proto)
|
|
assert behavior_spec.is_action_discrete()
|
|
assert not behavior_spec.is_action_continuous()
|
|
assert behavior_spec.observation_shapes == [(3,), (4,)]
|
|
assert behavior_spec.discrete_action_branches == (5, 4)
|
|
assert behavior_spec.action_size == 2
|
|
bp = BrainParametersProto()
|
|
bp.vector_action_size.extend([6])
|
|
bp.vector_action_space_type = 1
|
|
behavior_spec = behavior_spec_from_proto(bp, agent_proto)
|
|
assert not behavior_spec.is_action_discrete()
|
|
assert behavior_spec.is_action_continuous()
|
|
assert behavior_spec.action_size == 6
|
|
|
|
|
|
def test_batched_step_result_from_proto_raises_on_infinite():
|
|
n_agents = 10
|
|
shapes = [(3,), (4,)]
|
|
behavior_spec = BehaviorSpec(shapes, ActionType.CONTINUOUS, 3)
|
|
ap_list = generate_list_agent_proto(n_agents, shapes, infinite_rewards=True)
|
|
with pytest.raises(RuntimeError):
|
|
steps_from_proto(ap_list, behavior_spec)
|
|
|
|
|
|
def test_batched_step_result_from_proto_raises_on_nan():
|
|
n_agents = 10
|
|
shapes = [(3,), (4,)]
|
|
behavior_spec = BehaviorSpec(shapes, ActionType.CONTINUOUS, 3)
|
|
ap_list = generate_list_agent_proto(n_agents, shapes, nan_observations=True)
|
|
with pytest.raises(RuntimeError):
|
|
steps_from_proto(ap_list, behavior_spec)
|