Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

158 行
7.1 KiB

# # Unity ML Agents
# ## Proximal Policy Optimization (PPO)
# Contains an implementation of PPO as described [here](https://arxiv.org/abs/1707.06347).
from docopt import docopt
import os
from ppo.models import *
from ppo.trainer import Trainer
from unityagents import UnityEnvironment
_USAGE = '''
Usage:
ppo (<env>) [options]
Options:
--help Show this message.
--batch-size=<n> How many experiences per gradient descent update step [default: 64].
--beta=<n> Strength of entropy regularization [default: 2.5e-3].
--buffer-size=<n> How large the experience buffer should be before gradient descent [default: 2048].
--curriculum=<file> Curriculum json file for environment [default: None].
--epsilon=<n> Acceptable threshold around ratio of old and new policy probabilities [default: 0.2].
--gamma=<n> Reward discount rate [default: 0.99].
--hidden-units=<n> Number of units in hidden layer [default: 64].
--keep-checkpoints=<n> How many model checkpoints to keep [default: 5].
--lambd=<n> Lambda parameter for GAE [default: 0.95].
--learning-rate=<rate> Model learning rate [default: 3e-4].
--load Whether to load the model or randomly initialize [default: False].
--max-steps=<n> Maximum number of steps to run environment [default: 1e6].
--normalize Whether to normalize the state input using running statistics [default: False].
--num-epoch=<n> Number of gradient descent steps per batch of experiences [default: 5].
--num-layers=<n> Number of hidden layers between state/observation and outputs [default: 2].
--run-path=<path> The sub-directory name for model and summary statistics [default: ppo].
--save-freq=<n> Frequency at which to save model [default: 50000].
--summary-freq=<n> Frequency at which to save training statistics [default: 10000].
--time-horizon=<n> How many steps to collect per agent before adding to buffer [default: 2048].
--train Whether to train model, or only run inference [default: False].
--worker-id=<n> Number to add to communication port (5005). Used for multi-environment [default: 0].
'''
options = docopt(_USAGE)
print(options)
# General parameters
max_steps = float(options['--max-steps'])
model_path = './models/{}'.format(str(options['--run-path']))
summary_path = './summaries/{}'.format(str(options['--run-path']))
load_model = options['--load']
train_model = options['--train']
summary_freq = int(options['--summary-freq'])
save_freq = int(options['--save-freq'])
env_name = options['<env>']
keep_checkpoints = int(options['--keep-checkpoints'])
worker_id = int(options['--worker-id'])
curriculum_file = str(options['--curriculum'])
if curriculum_file == "None":
curriculum_file = None
# Algorithm-specific parameters for tuning
gamma = float(options['--gamma'])
lambd = float(options['--lambd'])
time_horizon = int(options['--time-horizon'])
beta = float(options['--beta'])
num_epoch = int(options['--num-epoch'])
num_layers = int(options['--num-layers'])
epsilon = float(options['--epsilon'])
buffer_size = int(options['--buffer-size'])
learning_rate = float(options['--learning-rate'])
hidden_units = int(options['--hidden-units'])
batch_size = int(options['--batch-size'])
normalize = options['--normalize']
env = UnityEnvironment(file_name=env_name, worker_id=worker_id, curriculum=curriculum_file)
print(str(env))
brain_name = env.external_brain_names[0]
tf.reset_default_graph()
# Create the Tensorflow model graph
ppo_model = create_agent_model(env, lr=learning_rate,
h_size=hidden_units, epsilon=epsilon,
beta=beta, max_step=max_steps,
normalize=normalize, num_layers=num_layers)
is_continuous = (env.brains[brain_name].action_space_type == "continuous")
use_observations = (env.brains[brain_name].number_observations > 0)
use_states = (env.brains[brain_name].state_space_size > 0)
if not os.path.exists(model_path):
os.makedirs(model_path)
if not os.path.exists(summary_path):
os.makedirs(summary_path)
init = tf.global_variables_initializer()
saver = tf.train.Saver(max_to_keep=keep_checkpoints)
def get_progress():
if curriculum_file is not None:
if env._curriculum.measure_type == "progress":
return steps / max_steps
elif env._curriculum.measure_type == "reward":
return last_reward
else:
return None
else:
return None
with tf.Session() as sess:
# Instantiate model parameters
if load_model:
print('Loading Model...')
ckpt = tf.train.get_checkpoint_state(model_path)
if ckpt == None:
print('The model {0} could not be found. Make sure you specified the right '
'--run-path'.format(model_path))
saver.restore(sess, ckpt.model_checkpoint_path)
else:
sess.run(init)
steps, last_reward = sess.run([ppo_model.global_step, ppo_model.last_reward])
summary_writer = tf.summary.FileWriter(summary_path)
info = env.reset(train_mode=train_model, progress=get_progress())[brain_name]
trainer = Trainer(ppo_model, sess, info, is_continuous, use_observations, use_states, train_model)
if train_model:
trainer.write_text(summary_writer, 'Hyperparameters', options, steps)
while steps <= max_steps or not train_model:
if env.global_done:
info = env.reset(train_mode=train_model, progress=get_progress())[brain_name]
trainer.reset_buffers(info, total=True)
# Decide and take an action
new_info = trainer.take_action(info, env, brain_name, steps, normalize)
info = new_info
trainer.process_experiences(info, time_horizon, gamma, lambd)
if len(trainer.training_buffer['actions']) > buffer_size and train_model:
# Perform gradient descent with experience buffer
trainer.update_model(batch_size, num_epoch)
if steps % summary_freq == 0 and steps != 0 and train_model:
# Write training statistics to tensorboard.
trainer.write_summary(summary_writer, steps, env._curriculum.lesson_number)
if steps % save_freq == 0 and steps != 0 and train_model:
# Save Tensorflow model
save_model(sess, model_path=model_path, steps=steps, saver=saver)
if train_model:
steps += 1
sess.run(ppo_model.increment_step)
if len(trainer.stats['cumulative_reward']) > 0:
mean_reward = np.mean(trainer.stats['cumulative_reward'])
sess.run(ppo_model.update_reward, feed_dict={ppo_model.new_reward: mean_reward})
last_reward = sess.run(ppo_model.last_reward)
# Final save Tensorflow model
if steps != 0 and train_model:
save_model(sess, model_path=model_path, steps=steps, saver=saver)
env.close()
graph_name = (env_name.strip()
.replace('.app', '').replace('.exe', '').replace('.x86_64', '').replace('.x86', ''))
graph_name = os.path.basename(os.path.normpath(graph_name))
export_graph(model_path, graph_name)