您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
585 行
21 KiB
585 行
21 KiB
"""
|
|
Python Environment API for the ML-Agents toolkit
|
|
The aim of this API is to expose Agents evolving in a simulation
|
|
to perform reinforcement learning on.
|
|
This API supports multi-agent scenarios and groups similar Agents (same
|
|
observations, actions spaces and behavior) together. These groups of Agents are
|
|
identified by their BehaviorName.
|
|
For performance reasons, the data of each group of agents is processed in a
|
|
batched manner. Agents are identified by a unique AgentId identifier that
|
|
allows tracking of Agents across simulation steps. Note that there is no
|
|
guarantee that the number or order of the Agents in the state will be
|
|
consistent across simulation steps.
|
|
A simulation steps corresponds to moving the simulation forward until at least
|
|
one agent in the simulation sends its observations to Python again. Since
|
|
Agents can request decisions at different frequencies, a simulation step does
|
|
not necessarily correspond to a fixed simulation time increment.
|
|
"""
|
|
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Mapping
|
|
from typing import (
|
|
List,
|
|
NamedTuple,
|
|
Tuple,
|
|
Optional,
|
|
Dict,
|
|
Iterator,
|
|
Any,
|
|
Mapping as MappingType,
|
|
)
|
|
from enum import IntFlag, Enum
|
|
import numpy as np
|
|
|
|
from mlagents_envs.exception import UnityActionException
|
|
|
|
AgentId = int
|
|
BehaviorName = str
|
|
|
|
|
|
class DecisionStep(NamedTuple):
|
|
"""
|
|
Contains the data a single Agent collected since the last
|
|
simulation step.
|
|
- obs is a list of numpy arrays observations collected by the agent.
|
|
- reward is a float. Corresponds to the rewards collected by the agent
|
|
since the last simulation step.
|
|
- agent_id is an int and an unique identifier for the corresponding Agent.
|
|
- action_mask is an optional list of one dimensional array of booleans.
|
|
Only available when using multi-discrete actions.
|
|
Each array corresponds to an action branch. Each array contains a mask
|
|
for each action of the branch. If true, the action is not available for
|
|
the agent during this simulation step.
|
|
"""
|
|
|
|
obs: List[np.ndarray]
|
|
reward: float
|
|
agent_id: AgentId
|
|
action_mask: Optional[List[np.ndarray]]
|
|
|
|
|
|
class DecisionSteps(Mapping):
|
|
"""
|
|
Contains the data a batch of similar Agents collected since the last
|
|
simulation step. Note that all Agents do not necessarily have new
|
|
information to send at each simulation step. Therefore, the ordering of
|
|
agents and the batch size of the DecisionSteps are not fixed across
|
|
simulation steps.
|
|
- obs is a list of numpy arrays observations collected by the batch of
|
|
agent. Each obs has one extra dimension compared to DecisionStep: the
|
|
first dimension of the array corresponds to the batch size of the batch.
|
|
- reward is a float vector of length batch size. Corresponds to the
|
|
rewards collected by each agent since the last simulation step.
|
|
- agent_id is an int vector of length batch size containing unique
|
|
identifier for the corresponding Agent. This is used to track Agents
|
|
across simulation steps.
|
|
- action_mask is an optional list of two dimensional array of booleans.
|
|
Only available when using multi-discrete actions.
|
|
Each array corresponds to an action branch. The first dimension of each
|
|
array is the batch size and the second contains a mask for each action of
|
|
the branch. If true, the action is not available for the agent during
|
|
this simulation step.
|
|
"""
|
|
|
|
def __init__(self, obs, reward, agent_id, action_mask):
|
|
self.obs: List[np.ndarray] = obs
|
|
self.reward: np.ndarray = reward
|
|
self.agent_id: np.ndarray = agent_id
|
|
self.action_mask: Optional[List[np.ndarray]] = action_mask
|
|
self._agent_id_to_index: Optional[Dict[AgentId, int]] = None
|
|
|
|
@property
|
|
def agent_id_to_index(self) -> Dict[AgentId, int]:
|
|
"""
|
|
:returns: A Dict that maps agent_id to the index of those agents in
|
|
this DecisionSteps.
|
|
"""
|
|
if self._agent_id_to_index is None:
|
|
self._agent_id_to_index = {}
|
|
for a_idx, a_id in enumerate(self.agent_id):
|
|
self._agent_id_to_index[a_id] = a_idx
|
|
return self._agent_id_to_index
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.agent_id)
|
|
|
|
def __getitem__(self, agent_id: AgentId) -> DecisionStep:
|
|
"""
|
|
returns the DecisionStep for a specific agent.
|
|
:param agent_id: The id of the agent
|
|
:returns: The DecisionStep
|
|
"""
|
|
if agent_id not in self.agent_id_to_index:
|
|
raise KeyError(f"agent_id {agent_id} is not present in the DecisionSteps")
|
|
agent_index = self._agent_id_to_index[agent_id] # type: ignore
|
|
agent_obs = []
|
|
for batched_obs in self.obs:
|
|
agent_obs.append(batched_obs[agent_index])
|
|
agent_mask = None
|
|
if self.action_mask is not None:
|
|
agent_mask = []
|
|
for mask in self.action_mask:
|
|
agent_mask.append(mask[agent_index])
|
|
return DecisionStep(
|
|
obs=agent_obs,
|
|
reward=self.reward[agent_index],
|
|
agent_id=agent_id,
|
|
action_mask=agent_mask,
|
|
)
|
|
|
|
def __iter__(self) -> Iterator[Any]:
|
|
yield from self.agent_id
|
|
|
|
@staticmethod
|
|
def empty(spec: "BehaviorSpec") -> "DecisionSteps":
|
|
"""
|
|
Returns an empty DecisionSteps.
|
|
:param spec: The BehaviorSpec for the DecisionSteps
|
|
"""
|
|
obs: List[np.ndarray] = []
|
|
for sen_spec in spec.observation_specs:
|
|
obs += [np.zeros((0,) + sen_spec.shape, dtype=np.float32)]
|
|
return DecisionSteps(
|
|
obs=obs,
|
|
reward=np.zeros(0, dtype=np.float32),
|
|
agent_id=np.zeros(0, dtype=np.int32),
|
|
action_mask=None,
|
|
)
|
|
|
|
|
|
class TerminalStep(NamedTuple):
|
|
"""
|
|
Contains the data a single Agent collected when its episode ended.
|
|
- obs is a list of numpy arrays observations collected by the agent.
|
|
- reward is a float. Corresponds to the rewards collected by the agent
|
|
since the last simulation step.
|
|
- interrupted is a bool. Is true if the Agent was interrupted since the last
|
|
decision step. For example, if the Agent reached the maximum number of steps for
|
|
the episode.
|
|
- agent_id is an int and an unique identifier for the corresponding Agent.
|
|
"""
|
|
|
|
obs: List[np.ndarray]
|
|
reward: float
|
|
interrupted: bool
|
|
agent_id: AgentId
|
|
|
|
|
|
class TerminalSteps(Mapping):
|
|
"""
|
|
Contains the data a batch of Agents collected when their episode
|
|
terminated. All Agents present in the TerminalSteps have ended their
|
|
episode.
|
|
- obs is a list of numpy arrays observations collected by the batch of
|
|
agent. Each obs has one extra dimension compared to DecisionStep: the
|
|
first dimension of the array corresponds to the batch size of the batch.
|
|
- reward is a float vector of length batch size. Corresponds to the
|
|
rewards collected by each agent since the last simulation step.
|
|
- interrupted is an array of booleans of length batch size. Is true if the
|
|
associated Agent was interrupted since the last decision step. For example, if the
|
|
Agent reached the maximum number of steps for the episode.
|
|
- agent_id is an int vector of length batch size containing unique
|
|
identifier for the corresponding Agent. This is used to track Agents
|
|
across simulation steps.
|
|
"""
|
|
|
|
def __init__(self, obs, reward, interrupted, agent_id):
|
|
self.obs: List[np.ndarray] = obs
|
|
self.reward: np.ndarray = reward
|
|
self.interrupted: np.ndarray = interrupted
|
|
self.agent_id: np.ndarray = agent_id
|
|
self._agent_id_to_index: Optional[Dict[AgentId, int]] = None
|
|
|
|
@property
|
|
def agent_id_to_index(self) -> Dict[AgentId, int]:
|
|
"""
|
|
:returns: A Dict that maps agent_id to the index of those agents in
|
|
this TerminalSteps.
|
|
"""
|
|
if self._agent_id_to_index is None:
|
|
self._agent_id_to_index = {}
|
|
for a_idx, a_id in enumerate(self.agent_id):
|
|
self._agent_id_to_index[a_id] = a_idx
|
|
return self._agent_id_to_index
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.agent_id)
|
|
|
|
def __getitem__(self, agent_id: AgentId) -> TerminalStep:
|
|
"""
|
|
returns the TerminalStep for a specific agent.
|
|
:param agent_id: The id of the agent
|
|
:returns: obs, reward, done, agent_id and optional action mask for a
|
|
specific agent
|
|
"""
|
|
if agent_id not in self.agent_id_to_index:
|
|
raise KeyError(f"agent_id {agent_id} is not present in the TerminalSteps")
|
|
agent_index = self._agent_id_to_index[agent_id] # type: ignore
|
|
agent_obs = []
|
|
for batched_obs in self.obs:
|
|
agent_obs.append(batched_obs[agent_index])
|
|
return TerminalStep(
|
|
obs=agent_obs,
|
|
reward=self.reward[agent_index],
|
|
interrupted=self.interrupted[agent_index],
|
|
agent_id=agent_id,
|
|
)
|
|
|
|
def __iter__(self) -> Iterator[Any]:
|
|
yield from self.agent_id
|
|
|
|
@staticmethod
|
|
def empty(spec: "BehaviorSpec") -> "TerminalSteps":
|
|
"""
|
|
Returns an empty TerminalSteps.
|
|
:param spec: The BehaviorSpec for the TerminalSteps
|
|
"""
|
|
obs: List[np.ndarray] = []
|
|
for sen_spec in spec.observation_specs:
|
|
obs += [np.zeros((0,) + sen_spec.shape, dtype=np.float32)]
|
|
return TerminalSteps(
|
|
obs=obs,
|
|
reward=np.zeros(0, dtype=np.float32),
|
|
interrupted=np.zeros(0, dtype=np.bool),
|
|
agent_id=np.zeros(0, dtype=np.int32),
|
|
)
|
|
|
|
|
|
class _ActionTupleBase(ABC):
|
|
"""
|
|
An object whose fields correspond to action data of continuous and discrete
|
|
spaces. Dimensions are of (n_agents, continuous_size) and (n_agents, discrete_size),
|
|
respectively. Note, this also holds when continuous or discrete size is
|
|
zero.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
continuous: Optional[np.ndarray] = None,
|
|
discrete: Optional[np.ndarray] = None,
|
|
):
|
|
self._continuous: Optional[np.ndarray] = None
|
|
self._discrete: Optional[np.ndarray] = None
|
|
if continuous is not None:
|
|
self.add_continuous(continuous)
|
|
if discrete is not None:
|
|
self.add_discrete(discrete)
|
|
|
|
@property
|
|
def continuous(self) -> np.ndarray:
|
|
return self._continuous
|
|
|
|
@property
|
|
def discrete(self) -> np.ndarray:
|
|
return self._discrete
|
|
|
|
def add_continuous(self, continuous: np.ndarray) -> None:
|
|
if continuous.dtype != np.float32:
|
|
continuous = continuous.astype(np.float32, copy=False)
|
|
if self._discrete is None:
|
|
self._discrete = np.zeros(
|
|
(continuous.shape[0], 0), dtype=self.discrete_dtype
|
|
)
|
|
self._continuous = continuous
|
|
|
|
def add_discrete(self, discrete: np.ndarray) -> None:
|
|
if discrete.dtype != self.discrete_dtype:
|
|
discrete = discrete.astype(self.discrete_dtype, copy=False)
|
|
if self._continuous is None:
|
|
self._continuous = np.zeros((discrete.shape[0], 0), dtype=np.float32)
|
|
self._discrete = discrete
|
|
|
|
@property
|
|
@abstractmethod
|
|
def discrete_dtype(self) -> np.dtype:
|
|
pass
|
|
|
|
|
|
class ActionTuple(_ActionTupleBase):
|
|
"""
|
|
An object whose fields correspond to actions of different types.
|
|
Continuous and discrete actions are numpy arrays of type float32 and
|
|
int32, respectively and are type checked on construction.
|
|
Dimensions are of (n_agents, continuous_size) and (n_agents, discrete_size),
|
|
respectively. Note, this also holds when continuous or discrete size is
|
|
zero.
|
|
"""
|
|
|
|
@property
|
|
def discrete_dtype(self) -> np.dtype:
|
|
"""
|
|
The dtype of a discrete action.
|
|
"""
|
|
return np.int32
|
|
|
|
|
|
class ActionSpec(NamedTuple):
|
|
"""
|
|
A NamedTuple containing utility functions and information about the action spaces
|
|
for a group of Agents under the same behavior.
|
|
- num_continuous_actions is an int corresponding to the number of floats which
|
|
constitute the action.
|
|
- discrete_branch_sizes is a Tuple of int where each int corresponds to
|
|
the number of discrete actions available to the agent on an independent action branch.
|
|
"""
|
|
|
|
continuous_size: int
|
|
discrete_branches: Tuple[int, ...]
|
|
|
|
def __eq__(self, other):
|
|
return (
|
|
self.continuous_size == other.continuous_size
|
|
and self.discrete_branches == other.discrete_branches
|
|
)
|
|
|
|
def __str__(self):
|
|
return f"Continuous: {self.continuous_size}, Discrete: {self.discrete_branches}"
|
|
|
|
# For backwards compatibility
|
|
def is_discrete(self) -> bool:
|
|
"""
|
|
Returns true if this Behavior uses discrete actions
|
|
"""
|
|
return self.discrete_size > 0 and self.continuous_size == 0
|
|
|
|
# For backwards compatibility
|
|
def is_continuous(self) -> bool:
|
|
"""
|
|
Returns true if this Behavior uses continuous actions
|
|
"""
|
|
return self.discrete_size == 0 and self.continuous_size > 0
|
|
|
|
@property
|
|
def discrete_size(self) -> int:
|
|
"""
|
|
Returns a an int corresponding to the number of discrete branches.
|
|
"""
|
|
return len(self.discrete_branches)
|
|
|
|
def empty_action(self, n_agents: int) -> ActionTuple:
|
|
"""
|
|
Generates ActionTuple corresponding to an empty action (all zeros)
|
|
for a number of agents.
|
|
:param n_agents: The number of agents that will have actions generated
|
|
"""
|
|
_continuous = np.zeros((n_agents, self.continuous_size), dtype=np.float32)
|
|
_discrete = np.zeros((n_agents, self.discrete_size), dtype=np.int32)
|
|
return ActionTuple(continuous=_continuous, discrete=_discrete)
|
|
|
|
def random_action(self, n_agents: int) -> ActionTuple:
|
|
"""
|
|
Generates ActionTuple corresponding to a random action (either discrete
|
|
or continuous) for a number of agents.
|
|
:param n_agents: The number of agents that will have actions generated
|
|
"""
|
|
_continuous = np.random.uniform(
|
|
low=-1.0, high=1.0, size=(n_agents, self.continuous_size)
|
|
)
|
|
_discrete = np.zeros((n_agents, self.discrete_size), dtype=np.int32)
|
|
if self.discrete_size > 0:
|
|
_discrete = np.column_stack(
|
|
[
|
|
np.random.randint(
|
|
0,
|
|
self.discrete_branches[i], # type: ignore
|
|
size=(n_agents),
|
|
dtype=np.int32,
|
|
)
|
|
for i in range(self.discrete_size)
|
|
]
|
|
)
|
|
return ActionTuple(continuous=_continuous, discrete=_discrete)
|
|
|
|
def _validate_action(
|
|
self, actions: ActionTuple, n_agents: Optional[int], name: str
|
|
) -> ActionTuple:
|
|
"""
|
|
Validates that action has the correct action dim
|
|
for the correct number of agents and ensures the type.
|
|
"""
|
|
_expected_shape = (
|
|
(n_agents, self.continuous_size)
|
|
if n_agents is not None
|
|
else (self.continuous_size,)
|
|
)
|
|
if actions.continuous.shape != _expected_shape:
|
|
raise UnityActionException(
|
|
f"The behavior {name} needs a continuous input of dimension "
|
|
f"{_expected_shape} for (<number of agents>, <action size>) but "
|
|
f"received input of dimension {actions.continuous.shape}"
|
|
)
|
|
_expected_shape = (
|
|
(n_agents, self.discrete_size)
|
|
if n_agents is not None
|
|
else (self.discrete_size,)
|
|
)
|
|
if actions.discrete.shape != _expected_shape:
|
|
raise UnityActionException(
|
|
f"The behavior {name} needs a discrete input of dimension "
|
|
f"{_expected_shape} for (<number of agents>, <action size>) but "
|
|
f"received input of dimension {actions.discrete.shape}"
|
|
)
|
|
return actions
|
|
|
|
@staticmethod
|
|
def create_continuous(continuous_size: int) -> "ActionSpec":
|
|
"""
|
|
Creates an ActionSpec that is homogenously continuous
|
|
"""
|
|
return ActionSpec(continuous_size, ())
|
|
|
|
@staticmethod
|
|
def create_discrete(discrete_branches: Tuple[int]) -> "ActionSpec":
|
|
"""
|
|
Creates an ActionSpec that is homogenously discrete
|
|
"""
|
|
return ActionSpec(0, discrete_branches)
|
|
|
|
|
|
class DimensionProperty(IntFlag):
|
|
"""
|
|
No properties specified.
|
|
"""
|
|
|
|
UNSPECIFIED = 0
|
|
"""
|
|
No Property of the observation in that dimension. Observation can be processed with
|
|
Fully connected networks.
|
|
"""
|
|
NONE = 1
|
|
"""
|
|
Means it is suitable to do a convolution in this dimension.
|
|
"""
|
|
TRANSLATIONAL_EQUIVARIANCE = 2
|
|
"""
|
|
Means that there can be a variable number of observations in this dimension.
|
|
The observations are unordered.
|
|
"""
|
|
VARIABLE_SIZE = 4
|
|
|
|
|
|
class ObservationType(Enum):
|
|
DEFAULT = 0
|
|
GOAL = 1
|
|
REWARD = 2
|
|
MESSAGE = 3
|
|
|
|
|
|
class ObservationSpec(NamedTuple):
|
|
"""
|
|
A NamedTuple containing information about the observation of Agents.
|
|
- shape is a Tuple of int : It corresponds to the shape of
|
|
an observation's dimensions.
|
|
- dimension_property is a Tuple of DimensionProperties flag, one flag for each
|
|
dimension.
|
|
- observation_type is an enum of ObservationType.
|
|
"""
|
|
|
|
shape: Tuple[int, ...]
|
|
dimension_property: Tuple[DimensionProperty, ...]
|
|
observation_type: ObservationType
|
|
|
|
|
|
class BehaviorSpec(NamedTuple):
|
|
"""
|
|
A NamedTuple containing information about the observation and action
|
|
spaces for a group of Agents under the same behavior.
|
|
- observation_specs is a List of ObservationSpec NamedTuple containing
|
|
information about the information of the Agent's observations such as their shapes.
|
|
The order of the SensorSpec is the same as the order of the observations of an
|
|
agent.
|
|
- action_spec is an ActionSpec NamedTuple.
|
|
"""
|
|
|
|
observation_specs: List[ObservationSpec]
|
|
action_spec: ActionSpec
|
|
|
|
|
|
class BehaviorMapping(Mapping):
|
|
def __init__(self, specs: Dict[BehaviorName, BehaviorSpec]):
|
|
self._dict = specs
|
|
|
|
def __len__(self) -> int:
|
|
return len(self._dict)
|
|
|
|
def __getitem__(self, behavior: BehaviorName) -> BehaviorSpec:
|
|
return self._dict[behavior]
|
|
|
|
def __iter__(self) -> Iterator[Any]:
|
|
yield from self._dict
|
|
|
|
|
|
class BaseEnv(ABC):
|
|
@abstractmethod
|
|
def step(self) -> None:
|
|
"""
|
|
Signals the environment that it must move the simulation forward
|
|
by one step.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def reset(self) -> None:
|
|
"""
|
|
Signals the environment that it must reset the simulation.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def close(self) -> None:
|
|
"""
|
|
Signals the environment that it must close.
|
|
"""
|
|
|
|
@property
|
|
@abstractmethod
|
|
def behavior_specs(self) -> MappingType[str, BehaviorSpec]:
|
|
"""
|
|
Returns a Mapping from behavior names to behavior specs.
|
|
Agents grouped under the same behavior name have the same action and
|
|
observation specs, and are expected to behave similarly in the
|
|
environment.
|
|
Note that new keys can be added to this mapping as new policies are instantiated.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def set_actions(self, behavior_name: BehaviorName, action: ActionTuple) -> None:
|
|
"""
|
|
Sets the action for all of the agents in the simulation for the next
|
|
step. The Actions must be in the same order as the order received in
|
|
the DecisionSteps.
|
|
:param behavior_name: The name of the behavior the agents are part of
|
|
:param action: ActionTuple tuple of continuous and/or discrete action.
|
|
Actions are np.arrays with dimensions (n_agents, continuous_size) and
|
|
(n_agents, discrete_size), respectively.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def set_action_for_agent(
|
|
self, behavior_name: BehaviorName, agent_id: AgentId, action: ActionTuple
|
|
) -> None:
|
|
"""
|
|
Sets the action for one of the agents in the simulation for the next
|
|
step.
|
|
:param behavior_name: The name of the behavior the agent is part of
|
|
:param agent_id: The id of the agent the action is set for
|
|
:param action: ActionTuple tuple of continuous and/or discrete action
|
|
Actions are np.arrays with dimensions (1, continuous_size) and
|
|
(1, discrete_size), respectively. Note, this initial dimensions of 1 is because
|
|
this action is meant for a single agent.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def get_steps(
|
|
self, behavior_name: BehaviorName
|
|
) -> Tuple[DecisionSteps, TerminalSteps]:
|
|
"""
|
|
Retrieves the steps of the agents that requested a step in the
|
|
simulation.
|
|
:param behavior_name: The name of the behavior the agents are part of
|
|
:return: A tuple containing :
|
|
- A DecisionSteps NamedTuple containing the observations,
|
|
the rewards, the agent ids and the action masks for the Agents
|
|
of the specified behavior. These Agents need an action this step.
|
|
- A TerminalSteps NamedTuple containing the observations,
|
|
rewards, agent ids and interrupted flags of the agents that had their
|
|
episode terminated last step.
|
|
"""
|