Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

598 行
22 KiB

# # Unity ML-Agents Toolkit
import argparse
import yaml
import os
import numpy as np
import json
from typing import Callable, Optional, List, NamedTuple, Dict
import mlagents.trainers
import mlagents_envs
from mlagents import tf_utils
from mlagents.trainers.trainer_controller import TrainerController
from mlagents.trainers.meta_curriculum import MetaCurriculum
from mlagents.trainers.trainer_util import (
load_config,
TrainerFactory,
handle_existing_directories,
assemble_curriculum_config,
)
from mlagents.trainers.stats import (
TensorboardWriter,
CSVWriter,
StatsReporter,
GaugeWriter,
ConsoleWriter,
)
from mlagents.trainers.cli_utils import (
StoreConfigFile,
DetectDefault,
DetectDefaultStoreTrue,
)
from mlagents_envs.environment import UnityEnvironment
from mlagents.trainers.sampler_class import SamplerManager
from mlagents.trainers.exception import SamplerException, TrainerConfigError
from mlagents_envs.base_env import BaseEnv
from mlagents.trainers.subprocess_env_manager import SubprocessEnvManager
from mlagents_envs.side_channel.side_channel import SideChannel
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfig
from mlagents_envs.timers import (
hierarchical_timer,
get_timer_tree,
add_metadata as add_timer_metadata,
)
from mlagents_envs import logging_util
logger = logging_util.get_logger(__name__)
def _create_parser():
argparser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
argparser.add_argument("trainer_config_path", action=StoreConfigFile)
argparser.add_argument(
"--env",
default=None,
dest="env_path",
help="Path to the Unity executable to train",
action=DetectDefault,
)
argparser.add_argument(
"--lesson",
default=0,
type=int,
help="The lesson to start with when performing curriculum training",
action=DetectDefault,
)
argparser.add_argument(
"--keep-checkpoints",
default=5,
type=int,
help="The maximum number of model checkpoints to keep. Checkpoints are saved after the"
"number of steps specified by the save-freq option. Once the maximum number of checkpoints"
"has been reached, the oldest checkpoint is deleted when saving a new checkpoint.",
action=DetectDefault,
)
argparser.add_argument(
"--load",
default=False,
dest="load_model",
action=DetectDefaultStoreTrue,
help=argparse.SUPPRESS, # Deprecated but still usable for now.
)
argparser.add_argument(
"--resume",
default=False,
dest="resume",
action=DetectDefaultStoreTrue,
help="Whether to resume training from a checkpoint. Specify a --run-id to use this option. "
"If set, the training code loads an already trained model to initialize the neural network "
"before resuming training. This option is only valid when the models exist, and have the same "
"behavior names as the current agents in your scene.",
)
argparser.add_argument(
"--force",
default=False,
dest="force",
action=DetectDefaultStoreTrue,
help="Whether to force-overwrite this run-id's existing summary and model data. (Without "
"this flag, attempting to train a model with a run-id that has been used before will throw "
"an error.",
)
argparser.add_argument(
"--run-id",
default="ppo",
help="The identifier for the training run. This identifier is used to name the "
"subdirectories in which the trained model and summary statistics are saved as well "
"as the saved model itself. If you use TensorBoard to view the training statistics, "
"always set a unique run-id for each training run. (The statistics for all runs with the "
"same id are combined as if they were produced by a the same session.)",
action=DetectDefault,
)
argparser.add_argument(
"--initialize-from",
metavar="RUN_ID",
default=None,
help="Specify a previously saved run ID from which to initialize the model from. "
"This can be used, for instance, to fine-tune an existing model on a new environment. "
"Note that the previously saved models must have the same behavior parameters as your "
"current environment.",
action=DetectDefault,
)
argparser.add_argument(
"--save-freq",
default=50000,
type=int,
help="How often (in steps) to save the model during training",
action=DetectDefault,
)
argparser.add_argument(
"--seed",
default=-1,
type=int,
help="A number to use as a seed for the random number generator used by the training code",
action=DetectDefault,
)
argparser.add_argument(
"--train",
default=False,
dest="train_model",
action=DetectDefaultStoreTrue,
help=argparse.SUPPRESS,
)
argparser.add_argument(
"--inference",
default=False,
dest="inference",
action=DetectDefaultStoreTrue,
help="Whether to run in Python inference mode (i.e. no training). Use with --resume to load "
"a model trained with an existing run ID.",
)
argparser.add_argument(
"--base-port",
default=UnityEnvironment.BASE_ENVIRONMENT_PORT,
type=int,
help="The starting port for environment communication. Each concurrent Unity environment "
"instance will get assigned a port sequentially, starting from the base-port. Each instance "
"will use the port (base_port + worker_id), where the worker_id is sequential IDs given to "
"each instance from 0 to (num_envs - 1). Note that when training using the Editor rather "
"than an executable, the base port will be ignored.",
action=DetectDefault,
)
argparser.add_argument(
"--num-envs",
default=1,
type=int,
help="The number of concurrent Unity environment instances to collect experiences "
"from when training",
action=DetectDefault,
)
argparser.add_argument(
"--no-graphics",
default=False,
action=DetectDefaultStoreTrue,
help="Whether to run the Unity executable in no-graphics mode (i.e. without initializing "
"the graphics driver. Use this only if your agents don't use visual observations.",
)
argparser.add_argument(
"--debug",
default=False,
action=DetectDefaultStoreTrue,
help="Whether to enable debug-level logging for some parts of the code",
)
argparser.add_argument(
"--env-args",
default=None,
nargs=argparse.REMAINDER,
help="Arguments passed to the Unity executable. Be aware that the standalone build will also "
"process these as Unity Command Line Arguments. You should choose different argument names if "
"you want to create environment-specific arguments. All arguments after this flag will be "
"passed to the executable.",
action=DetectDefault,
)
argparser.add_argument(
"--cpu",
default=False,
action=DetectDefaultStoreTrue,
help="Forces training using CPU only",
)
argparser.add_argument("--version", action="version", version="")
eng_conf = argparser.add_argument_group(title="Engine Configuration")
eng_conf.add_argument(
"--width",
default=None,
type=int,
help="The width of the executable window of the environment(s) in pixels "
"(ignored for editor training).",
action=DetectDefault,
)
eng_conf.add_argument(
"--height",
default=None,
type=int,
help="The height of the executable window of the environment(s) in pixels "
"(ignored for editor training)",
action=DetectDefault,
)
eng_conf.add_argument(
"--quality-level",
default=5,
type=int,
help="The quality level of the environment(s). Equivalent to calling "
"QualitySettings.SetQualityLevel in Unity.",
action=DetectDefault,
)
eng_conf.add_argument(
"--time-scale",
default=20,
type=float,
help="The time scale of the Unity environment(s). Equivalent to setting "
"Time.timeScale in Unity.",
action=DetectDefault,
)
eng_conf.add_argument(
"--target-frame-rate",
default=-1,
type=int,
help="The target frame rate of the Unity environment(s). Equivalent to setting "
"Application.targetFrameRate in Unity.",
action=DetectDefault,
)
eng_conf.add_argument(
"--capture-frame-rate",
default=60,
type=int,
help="The capture frame rate of the Unity environment(s). Equivalent to setting "
"Time.captureFramerate in Unity.",
action=DetectDefault,
)
return argparser
parser = _create_parser()
class RunOptions(NamedTuple):
behaviors: Dict
debug: bool = parser.get_default("debug")
seed: int = parser.get_default("seed")
env_path: Optional[str] = parser.get_default("env_path")
run_id: str = parser.get_default("run_id")
initialize_from: str = parser.get_default("initialize_from")
load_model: bool = parser.get_default("load_model")
resume: bool = parser.get_default("resume")
force: bool = parser.get_default("force")
train_model: bool = parser.get_default("train_model")
inference: bool = parser.get_default("inference")
save_freq: int = parser.get_default("save_freq")
keep_checkpoints: int = parser.get_default("keep_checkpoints")
base_port: int = parser.get_default("base_port")
num_envs: int = parser.get_default("num_envs")
curriculum_config: Optional[Dict] = None
lesson: int = parser.get_default("lesson")
no_graphics: bool = parser.get_default("no_graphics")
multi_gpu: bool = parser.get_default("multi_gpu")
parameter_randomization: Optional[Dict] = None
env_args: Optional[List[str]] = parser.get_default("env_args")
cpu: bool = parser.get_default("cpu")
width: int = parser.get_default("width")
height: int = parser.get_default("height")
quality_level: int = parser.get_default("quality_level")
time_scale: float = parser.get_default("time_scale")
target_frame_rate: int = parser.get_default("target_frame_rate")
capture_frame_rate: int = parser.get_default("capture_frame_rate")
@staticmethod
def from_argparse(args: argparse.Namespace) -> "RunOptions":
"""
Takes an argparse.Namespace as specified in `parse_command_line`, loads input configuration files
from file paths, and converts to a CommandLineOptions instance.
:param args: collection of command-line parameters passed to mlagents-learn
:return: CommandLineOptions representing the passed in arguments, with trainer config, curriculum and sampler
configs loaded from files.
"""
argparse_args = vars(args)
run_options_dict = {}
run_options_dict.update(argparse_args)
config_path = StoreConfigFile.trainer_config_path
# Load YAML
yaml_config = load_config(config_path)
# This is the only option that is not optional and has no defaults.
if "behaviors" not in yaml_config:
raise TrainerConfigError(
"Trainer configurations not found. Make sure your YAML file has a section for behaviors."
)
# Use the YAML file values for all values not specified in the CLI.
for key, val in yaml_config.items():
# Detect bad config options
if not hasattr(RunOptions, key):
raise TrainerConfigError(
"The option {} was specified in your YAML file, but is invalid.".format(
key
)
)
if key not in DetectDefault.non_default_args:
run_options_dict[key] = val
# Keep deprecated --load working, TODO: remove
run_options_dict["resume"] = (
run_options_dict["resume"] or run_options_dict["load_model"]
)
return RunOptions(**run_options_dict)
def get_version_string() -> str:
# pylint: disable=no-member
return f""" Version information:
ml-agents: {mlagents.trainers.__version__},
ml-agents-envs: {mlagents_envs.__version__},
Communicator API: {UnityEnvironment.API_VERSION},
TensorFlow: {tf_utils.tf.__version__}"""
def parse_command_line(argv: Optional[List[str]] = None) -> RunOptions:
args = parser.parse_args(argv)
return RunOptions.from_argparse(args)
def run_training(run_seed: int, options: RunOptions) -> None:
"""
Launches training session.
:param options: parsed command line arguments
:param run_seed: Random seed used for training.
:param run_options: Command line arguments for training.
"""
with hierarchical_timer("run_training.setup"):
base_path = "results"
write_path = os.path.join(base_path, options.run_id)
maybe_init_path = (
os.path.join(base_path, options.run_id) if options.initialize_from else None
)
run_logs_dir = os.path.join(write_path, "run_logs")
port = options.base_port
# Check if directory exists
handle_existing_directories(
write_path, options.resume, options.force, maybe_init_path
)
# Make run logs directory
os.makedirs(run_logs_dir, exist_ok=True)
# Configure CSV, Tensorboard Writers and StatsReporter
# We assume reward and episode length are needed in the CSV.
csv_writer = CSVWriter(
write_path,
required_fields=[
"Environment/Cumulative Reward",
"Environment/Episode Length",
],
)
tb_writer = TensorboardWriter(write_path, clear_past_data=not options.resume)
gauge_write = GaugeWriter()
console_writer = ConsoleWriter()
StatsReporter.add_writer(tb_writer)
StatsReporter.add_writer(csv_writer)
StatsReporter.add_writer(gauge_write)
StatsReporter.add_writer(console_writer)
if options.env_path is None:
port = UnityEnvironment.DEFAULT_EDITOR_PORT
env_factory = create_environment_factory(
options.env_path,
options.no_graphics,
run_seed,
port,
options.env_args,
os.path.abspath(run_logs_dir), # Unity environment requires absolute path
)
engine_config = EngineConfig(
width=options.width,
height=options.height,
quality_level=options.quality_level,
time_scale=options.time_scale,
target_frame_rate=options.target_frame_rate,
capture_frame_rate=options.capture_frame_rate,
)
env_manager = SubprocessEnvManager(env_factory, engine_config, options.num_envs)
curriculum_config = assemble_curriculum_config(options.behaviors)
maybe_meta_curriculum = try_create_meta_curriculum(
curriculum_config, env_manager, options.lesson
)
sampler_manager, resampling_interval = create_sampler_manager(
options.parameter_randomization, run_seed
)
trainer_factory = TrainerFactory(
options.behaviors,
options.run_id,
write_path,
options.keep_checkpoints,
not options.inference,
options.resume,
run_seed,
maybe_init_path,
maybe_meta_curriculum,
options.multi_gpu,
)
# Create controller and begin training.
tc = TrainerController(
trainer_factory,
write_path,
options.run_id,
options.save_freq,
maybe_meta_curriculum,
not options.inference,
run_seed,
sampler_manager,
resampling_interval,
)
# Begin training
try:
tc.start_learning(env_manager)
finally:
env_manager.close()
write_run_options(write_path, options)
write_timing_tree(run_logs_dir)
def write_run_options(output_dir: str, run_options: RunOptions) -> None:
run_options_path = os.path.join(output_dir, "configuration.yaml")
try:
with open(run_options_path, "w") as f:
try:
yaml.dump(dict(run_options._asdict()), f, sort_keys=False)
except TypeError: # Older versions of pyyaml don't support sort_keys
yaml.dump(dict(run_options._asdict()), f)
except FileNotFoundError:
logger.warning(
f"Unable to save configuration to {run_options_path}. Make sure the directory exists"
)
def write_timing_tree(output_dir: str) -> None:
timing_path = os.path.join(output_dir, "timers.json")
try:
with open(timing_path, "w") as f:
json.dump(get_timer_tree(), f, indent=4)
except FileNotFoundError:
logger.warning(
f"Unable to save to {timing_path}. Make sure the directory exists"
)
def create_sampler_manager(sampler_config, run_seed=None):
resample_interval = None
if sampler_config is not None:
if "resampling-interval" in sampler_config:
# Filter arguments that do not exist in the environment
resample_interval = sampler_config.pop("resampling-interval")
if (resample_interval <= 0) or (not isinstance(resample_interval, int)):
raise SamplerException(
"Specified resampling-interval is not valid. Please provide"
" a positive integer value for resampling-interval"
)
else:
raise SamplerException(
"Resampling interval was not specified in the sampler file."
" Please specify it with the 'resampling-interval' key in the sampler config file."
)
sampler_manager = SamplerManager(sampler_config, run_seed)
return sampler_manager, resample_interval
def try_create_meta_curriculum(
curriculum_config: Optional[Dict], env: SubprocessEnvManager, lesson: int
) -> Optional[MetaCurriculum]:
if curriculum_config is None or len(curriculum_config) <= 0:
return None
else:
meta_curriculum = MetaCurriculum(curriculum_config)
# TODO: Should be able to start learning at different lesson numbers
# for each curriculum.
meta_curriculum.set_all_curricula_to_lesson_num(lesson)
return meta_curriculum
def create_environment_factory(
env_path: Optional[str],
no_graphics: bool,
seed: int,
start_port: int,
env_args: Optional[List[str]],
log_folder: str,
) -> Callable[[int, List[SideChannel]], BaseEnv]:
def create_unity_environment(
worker_id: int, side_channels: List[SideChannel]
) -> UnityEnvironment:
# Make sure that each environment gets a different seed
env_seed = seed + worker_id
return UnityEnvironment(
file_name=env_path,
worker_id=worker_id,
seed=env_seed,
no_graphics=no_graphics,
base_port=start_port,
additional_args=env_args,
side_channels=side_channels,
log_folder=log_folder,
)
return create_unity_environment
def run_cli(options: RunOptions) -> None:
try:
print(
"""
▄▄▄▓▓▓▓
╓▓▓▓▓▓▓█▓▓▓▓▓
,▄▄▄m▀▀▀' ,▓▓▓▀▓▓▄ ▓▓▓ ▓▓▌
▄▓▓▓▀' ▄▓▓▀ ▓▓▓ ▄▄ ▄▄ ,▄▄ ▄▄▄▄ ,▄▄ ▄▓▓▌▄ ▄▄▄ ,▄▄
▄▓▓▓▀ ▄▓▓▀ ▐▓▓▌ ▓▓▌ ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌ ╒▓▓▌
▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓ ▓▀ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▄ ▓▓▌
▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄ ▓▓ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▐▓▓
^█▓▓▓ ▀▓▓▄ ▐▓▓▌ ▓▓▓▓▄▓▓▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▓▄ ▓▓▓▓`
'▀▓▓▓▄ ^▓▓▓ ▓▓▓ └▀▀▀▀ ▀▀ ^▀▀ `▀▀ `▀▀ '▀▀ ▐▓▓▌
▀▀▀▀▓▄▄▄ ▓▓▓▓▓▓, ▓▓▓▓▀
`▀█▓▓▓▓▓▓▓▓▓▌
¬`▀▀▀█▓
"""
)
except Exception:
print("\n\n\tUnity Technologies\n")
print(get_version_string())
if options.debug:
log_level = logging_util.DEBUG
else:
log_level = logging_util.INFO
# disable noisy warnings from tensorflow
tf_utils.set_warnings_enabled(False)
logging_util.set_log_level(log_level)
logger.debug("Configuration for this run:")
logger.debug(json.dumps(options._asdict(), indent=4))
# Options deprecation warnings
if options.load_model:
logger.warning(
"The --load option has been deprecated. Please use the --resume option instead."
)
if options.train_model:
logger.warning(
"The --train option has been deprecated. Train mode is now the default. Use "
"--inference to run in inference mode."
)
run_seed = options.seed
if options.cpu:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# Add some timer metadata
add_timer_metadata("mlagents_version", mlagents.trainers.__version__)
add_timer_metadata("mlagents_envs_version", mlagents_envs.__version__)
add_timer_metadata("communication_protocol_version", UnityEnvironment.API_VERSION)
add_timer_metadata("tensorflow_version", tf_utils.tf.__version__)
if options.seed == -1:
run_seed = np.random.randint(0, 10000)
run_training(run_seed, options)
def main():
run_cli(parse_command_line())
# For python debugger to directly run this script
if __name__ == "__main__":
main()