您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
313 行
11 KiB
313 行
11 KiB
from typing import List, NamedTuple
|
|
import numpy as np
|
|
|
|
from mlagents.trainers.buffer import (
|
|
AgentBuffer,
|
|
ObservationKeyPrefix,
|
|
AgentBufferKey,
|
|
BufferKey,
|
|
)
|
|
from mlagents_envs.base_env import ActionTuple
|
|
from mlagents.trainers.torch.action_log_probs import LogProbsTuple
|
|
|
|
|
|
class AgentStatus(NamedTuple):
|
|
"""
|
|
Stores observation, action, and reward for an agent. Does not have additional
|
|
fields that are present in AgentExperience.
|
|
"""
|
|
|
|
obs: List[np.ndarray]
|
|
reward: float
|
|
action: ActionTuple
|
|
done: bool
|
|
|
|
|
|
class AgentExperience(NamedTuple):
|
|
"""
|
|
Stores the full amount of data for an agent in one timestep. Includes
|
|
the status' of group mates and the group reward, as well as the probabilities
|
|
outputted by the policy.
|
|
"""
|
|
|
|
obs: List[np.ndarray]
|
|
reward: float
|
|
done: bool
|
|
action: ActionTuple
|
|
action_probs: LogProbsTuple
|
|
action_mask: np.ndarray
|
|
prev_action: np.ndarray
|
|
interrupted: bool
|
|
memory: np.ndarray
|
|
group_status: List[AgentStatus]
|
|
group_reward: float
|
|
|
|
|
|
class ObsUtil:
|
|
@staticmethod
|
|
def get_name_at(index: int) -> AgentBufferKey:
|
|
"""
|
|
returns the name of the observation given the index of the observation
|
|
"""
|
|
return ObservationKeyPrefix.OBSERVATION, index
|
|
|
|
@staticmethod
|
|
def get_name_at_next(index: int) -> AgentBufferKey:
|
|
"""
|
|
returns the name of the next observation given the index of the observation
|
|
"""
|
|
return ObservationKeyPrefix.NEXT_OBSERVATION, index
|
|
|
|
@staticmethod
|
|
def from_buffer(batch: AgentBuffer, num_obs: int) -> List[np.array]:
|
|
"""
|
|
Creates the list of observations from an AgentBuffer
|
|
"""
|
|
result: List[np.array] = []
|
|
for i in range(num_obs):
|
|
result.append(batch[ObsUtil.get_name_at(i)])
|
|
return result
|
|
|
|
@staticmethod
|
|
def from_buffer_next(batch: AgentBuffer, num_obs: int) -> List[np.array]:
|
|
"""
|
|
Creates the list of next observations from an AgentBuffer
|
|
"""
|
|
result = []
|
|
for i in range(num_obs):
|
|
result.append(batch[ObsUtil.get_name_at_next(i)])
|
|
return result
|
|
|
|
|
|
class GroupObsUtil:
|
|
@staticmethod
|
|
def get_name_at(index: int) -> AgentBufferKey:
|
|
"""
|
|
returns the name of the observation given the index of the observation
|
|
"""
|
|
return ObservationKeyPrefix.GROUP_OBSERVATION, index
|
|
|
|
@staticmethod
|
|
def get_name_at_next(index: int) -> AgentBufferKey:
|
|
"""
|
|
returns the name of the next team observation given the index of the observation
|
|
"""
|
|
return ObservationKeyPrefix.NEXT_GROUP_OBSERVATION, index
|
|
|
|
@staticmethod
|
|
def _transpose_list_of_lists(
|
|
list_list: List[List[np.ndarray]],
|
|
) -> List[List[np.ndarray]]:
|
|
return list(map(list, zip(*list_list)))
|
|
|
|
@staticmethod
|
|
def from_buffer(batch: AgentBuffer, num_obs: int) -> List[np.array]:
|
|
"""
|
|
Creates the list of observations from an AgentBuffer
|
|
"""
|
|
separated_obs: List[np.array] = []
|
|
for i in range(num_obs):
|
|
separated_obs.append(
|
|
batch[GroupObsUtil.get_name_at(i)].padded_to_batch(pad_value=np.nan)
|
|
)
|
|
# separated_obs contains a List(num_obs) of Lists(num_agents), we want to flip
|
|
# that and get a List(num_agents) of Lists(num_obs)
|
|
result = GroupObsUtil._transpose_list_of_lists(separated_obs)
|
|
return result
|
|
|
|
@staticmethod
|
|
def from_buffer_next(batch: AgentBuffer, num_obs: int) -> List[np.array]:
|
|
"""
|
|
Creates the list of observations from an AgentBuffer
|
|
"""
|
|
separated_obs: List[np.array] = []
|
|
for i in range(num_obs):
|
|
separated_obs.append(
|
|
batch[GroupObsUtil.get_name_at_next(i)].padded_to_batch(
|
|
pad_value=np.nan
|
|
)
|
|
)
|
|
# separated_obs contains a List(num_obs) of Lists(num_agents), we want to flip
|
|
# that and get a List(num_agents) of Lists(num_obs)
|
|
result = GroupObsUtil._transpose_list_of_lists(separated_obs)
|
|
return result
|
|
|
|
|
|
class Trajectory(NamedTuple):
|
|
steps: List[AgentExperience]
|
|
next_obs: List[
|
|
np.ndarray
|
|
] # Observation following the trajectory, for bootstrapping
|
|
next_group_obs: List[List[np.ndarray]]
|
|
agent_id: str
|
|
behavior_id: str
|
|
|
|
def to_agentbuffer(self) -> AgentBuffer:
|
|
"""
|
|
Converts a Trajectory to an AgentBuffer
|
|
:param trajectory: A Trajectory
|
|
:returns: AgentBuffer. Note that the length of the AgentBuffer will be one
|
|
less than the trajectory, as the next observation need to be populated from the last
|
|
step of the trajectory.
|
|
"""
|
|
agent_buffer_trajectory = AgentBuffer()
|
|
obs = self.steps[0].obs
|
|
for step, exp in enumerate(self.steps):
|
|
is_last_step = step == len(self.steps) - 1
|
|
if not is_last_step:
|
|
next_obs = self.steps[step + 1].obs
|
|
else:
|
|
next_obs = self.next_obs
|
|
|
|
num_obs = len(obs)
|
|
for i in range(num_obs):
|
|
agent_buffer_trajectory[ObsUtil.get_name_at(i)].append(obs[i])
|
|
agent_buffer_trajectory[ObsUtil.get_name_at_next(i)].append(next_obs[i])
|
|
|
|
# Take care of teammate obs and actions
|
|
teammate_continuous_actions, teammate_discrete_actions, teammate_rewards = (
|
|
[],
|
|
[],
|
|
[],
|
|
)
|
|
for group_status in exp.group_status:
|
|
teammate_rewards.append(group_status.reward)
|
|
teammate_continuous_actions.append(group_status.action.continuous)
|
|
teammate_discrete_actions.append(group_status.action.discrete)
|
|
|
|
# Team actions
|
|
agent_buffer_trajectory[BufferKey.GROUP_CONTINUOUS_ACTION].append(
|
|
teammate_continuous_actions
|
|
)
|
|
agent_buffer_trajectory[BufferKey.GROUP_DISCRETE_ACTION].append(
|
|
teammate_discrete_actions
|
|
)
|
|
agent_buffer_trajectory[BufferKey.GROUPMATE_REWARDS].append(
|
|
teammate_rewards
|
|
)
|
|
agent_buffer_trajectory[BufferKey.GROUP_REWARD].append(exp.group_reward)
|
|
|
|
# Next actions
|
|
teammate_cont_next_actions = []
|
|
teammate_disc_next_actions = []
|
|
if not is_last_step:
|
|
next_exp = self.steps[step + 1]
|
|
for group_status in next_exp.group_status:
|
|
teammate_cont_next_actions.append(group_status.action.continuous)
|
|
teammate_disc_next_actions.append(group_status.action.discrete)
|
|
else:
|
|
for group_status in exp.group_status:
|
|
teammate_cont_next_actions.append(group_status.action.continuous)
|
|
teammate_disc_next_actions.append(group_status.action.discrete)
|
|
|
|
agent_buffer_trajectory[BufferKey.GROUP_NEXT_CONT_ACTION].append(
|
|
teammate_cont_next_actions
|
|
)
|
|
agent_buffer_trajectory[BufferKey.GROUP_NEXT_DISC_ACTION].append(
|
|
teammate_disc_next_actions
|
|
)
|
|
|
|
for i in range(num_obs):
|
|
ith_group_obs = []
|
|
for _group_status in exp.group_status:
|
|
# Assume teammates have same obs space
|
|
ith_group_obs.append(_group_status.obs[i])
|
|
agent_buffer_trajectory[GroupObsUtil.get_name_at(i)].append(
|
|
ith_group_obs
|
|
)
|
|
|
|
ith_group_obs_next = []
|
|
if is_last_step:
|
|
for _obs in self.next_group_obs:
|
|
ith_group_obs_next.append(_obs[i])
|
|
else:
|
|
next_group_status = self.steps[step + 1].group_status
|
|
for _group_status in next_group_status:
|
|
# Assume teammates have same obs space
|
|
ith_group_obs_next.append(_group_status.obs[i])
|
|
agent_buffer_trajectory[GroupObsUtil.get_name_at_next(i)].append(
|
|
ith_group_obs_next
|
|
)
|
|
|
|
if exp.memory is not None:
|
|
agent_buffer_trajectory[BufferKey.MEMORY].append(exp.memory)
|
|
|
|
agent_buffer_trajectory[BufferKey.MASKS].append(1.0)
|
|
agent_buffer_trajectory[BufferKey.DONE].append(exp.done)
|
|
agent_buffer_trajectory[BufferKey.GROUP_DONES].append(
|
|
[_status.done for _status in exp.group_status]
|
|
)
|
|
|
|
# Adds the log prob and action of continuous/discrete separately
|
|
agent_buffer_trajectory[BufferKey.CONTINUOUS_ACTION].append(
|
|
exp.action.continuous
|
|
)
|
|
agent_buffer_trajectory[BufferKey.DISCRETE_ACTION].append(
|
|
exp.action.discrete
|
|
)
|
|
|
|
cont_next_actions = np.zeros_like(exp.action.continuous)
|
|
disc_next_actions = np.zeros_like(exp.action.discrete)
|
|
|
|
if not is_last_step:
|
|
next_action = self.steps[step + 1].action
|
|
cont_next_actions = next_action.continuous
|
|
disc_next_actions = next_action.discrete
|
|
|
|
agent_buffer_trajectory[BufferKey.NEXT_CONT_ACTION].append(
|
|
cont_next_actions
|
|
)
|
|
agent_buffer_trajectory[BufferKey.NEXT_DISC_ACTION].append(
|
|
disc_next_actions
|
|
)
|
|
|
|
agent_buffer_trajectory[BufferKey.CONTINUOUS_LOG_PROBS].append(
|
|
exp.action_probs.continuous
|
|
)
|
|
agent_buffer_trajectory[BufferKey.DISCRETE_LOG_PROBS].append(
|
|
exp.action_probs.discrete
|
|
)
|
|
|
|
# Store action masks if necessary. Note that 1 means active, while
|
|
# in AgentExperience False means active.
|
|
if exp.action_mask is not None:
|
|
mask = 1 - np.concatenate(exp.action_mask)
|
|
agent_buffer_trajectory[BufferKey.ACTION_MASK].append(
|
|
mask, padding_value=1
|
|
)
|
|
else:
|
|
# This should never be needed unless the environment somehow doesn't supply the
|
|
# action mask in a discrete space.
|
|
|
|
action_shape = exp.action.discrete.shape
|
|
agent_buffer_trajectory[BufferKey.ACTION_MASK].append(
|
|
np.ones(action_shape, dtype=np.float32), padding_value=1
|
|
)
|
|
agent_buffer_trajectory[BufferKey.PREV_ACTION].append(exp.prev_action)
|
|
agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS].append(exp.reward)
|
|
|
|
# Store the next visual obs as the current
|
|
obs = next_obs
|
|
return agent_buffer_trajectory
|
|
|
|
@property
|
|
def done_reached(self) -> bool:
|
|
"""
|
|
Returns true if trajectory is terminated with a Done.
|
|
"""
|
|
return self.steps[-1].done
|
|
|
|
@property
|
|
def teammate_dones_reached(self) -> bool:
|
|
"""
|
|
Returns true if all teammates are done at the end of the trajectory.
|
|
Combine with done_reached to check if the whole team is done.
|
|
"""
|
|
return all(_status.done for _status in self.steps[-1].group_status)
|
|
|
|
@property
|
|
def interrupted(self) -> bool:
|
|
"""
|
|
Returns true if trajectory was terminated because max steps was reached.
|
|
"""
|
|
return self.steps[-1].interrupted
|