Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

249 行
9.1 KiB

using System;
using System.Collections.Generic;
using System.Linq;
using Barracuda;
using MLAgents.InferenceBrain.Utils;
using UnityEngine;
namespace MLAgents.InferenceBrain
{
/// <summary>
/// The Applier for the Continuous Action output tensor. Tensor is assumed to contain the
/// continuous action data of the agents in the batch.
/// </summary>
public class ContinuousActionOutputApplier : TensorApplier.Applier
{
public void Apply(TensorProxy tensorProxy, Dictionary<Agent, AgentInfo> agentInfo)
{
var actionSize = tensorProxy.shape[tensorProxy.shape.Length - 1];
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
var action = new float[actionSize];
for (var j = 0; j < actionSize; j++)
{
action[j] = tensorProxy.data[agentIndex, j];
}
agent.UpdateVectorAction(action);
agentIndex++;
}
}
}
/// <summary>
/// The Applier for the Discrete Action output tensor. Uses multinomial to sample discrete
/// actions from the logits contained in the tensor.
/// </summary>
public class DiscreteActionOutputApplier : TensorApplier.Applier
{
private readonly int[] _actionSize;
private readonly Multinomial _multinomial;
private readonly ITensorAllocator _allocator;
public DiscreteActionOutputApplier(int[] actionSize, int seed, ITensorAllocator allocator)
{
_actionSize = actionSize;
_multinomial = new Multinomial(seed);
_allocator = allocator;
}
public void Apply(TensorProxy tensorProxy, Dictionary<Agent, AgentInfo> agentInfo)
{
//var tensorDataProbabilities = tensorProxy.Data as float[,];
var batchSize = agentInfo.Keys.Count;
var actions = new float[batchSize, _actionSize.Length];
var startActionIndices = Utilities.CumSum(_actionSize);
for (var actionIndex=0; actionIndex < _actionSize.Length; actionIndex++)
{
var nBranchAction = _actionSize[actionIndex];
var actionProbs = new TensorProxy()
{
valueType = TensorProxy.TensorType.FloatingPoint,
shape = new long[]{batchSize, nBranchAction},
data = _allocator.Alloc(new TensorShape(batchSize, nBranchAction))
};
for (var batchIndex = 0; batchIndex < batchSize; batchIndex++)
{
for (var branchActionIndex = 0;
branchActionIndex < nBranchAction;
branchActionIndex++)
{
actionProbs.data[batchIndex, branchActionIndex] =
tensorProxy.data[batchIndex, startActionIndices[actionIndex] + branchActionIndex];
}
}
var outputTensor = new TensorProxy()
{
valueType = TensorProxy.TensorType.FloatingPoint,
shape = new long[]{batchSize, 1},
data = _allocator.Alloc(new TensorShape(batchSize, 1))
};
Eval(actionProbs, outputTensor, _multinomial);
for (var ii = 0; ii < batchSize; ii++)
{
actions[ii, actionIndex] = outputTensor.data[ii, 0];
}
actionProbs.data.Dispose();
outputTensor.data.Dispose();
}
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
var action = new float[_actionSize.Length];
for (var j = 0; j < _actionSize.Length; j++)
{
action[j] = actions[agentIndex, j];
}
agent.UpdateVectorAction(action);
agentIndex++;
}
}
/// <summary>
/// Draw samples from a multinomial distribution based on log-probabilities specified
/// in tensor src. The samples will be saved in the dst tensor.
/// </summary>
/// <param name="src">2-D tensor with shape batch_size x num_classes</param>
/// <param name="dst">Allocated tensor with size batch_size x num_samples</param>
/// <param name="multinomial">Multinomial object used to sample values</param>
/// <exception cref="NotImplementedException">
/// Multinomial doesn't support integer tensors
/// </exception>
/// <exception cref="ArgumentException">Issue with tensor shape or type</exception>
/// <exception cref="ArgumentNullException">
/// At least one of the tensors is not allocated
/// </exception>
public static void Eval(TensorProxy src, TensorProxy dst, Multinomial multinomial)
{
if (src.DataType != typeof(float))
{
throw new NotImplementedException("Only float tensors are currently supported");
}
if (src.valueType != dst.valueType)
{
throw new ArgumentException(
"Source and destination tensors have different types!");
}
if (src.data == null || dst.data == null)
{
throw new ArgumentNullException();
}
if (src.data.batch != dst.data.batch)
{
throw new ArgumentException("Batch size for input and output data is different!");
}
var cdf = new float[src.data.channels];
for (var batch = 0; batch < src.data.batch; ++batch)
{
// Find the class maximum
var maxProb = float.NegativeInfinity;
for (var cls = 0; cls < src.data.channels; ++cls)
{
maxProb = Mathf.Max(src.data[batch, cls], maxProb);
}
// Sum the log probabilities and compute CDF
var sumProb = 0.0f;
for (var cls = 0; cls < src.data.channels; ++cls)
{
sumProb += Mathf.Exp(src.data[batch, cls] - maxProb);
cdf[cls] = sumProb;
}
// Generate the samples
for (var sample = 0; sample < dst.data.channels; ++sample)
{
dst.data[batch, sample] = multinomial.Sample(cdf);
}
}
}
}
public class BarracudaMemoryOutputApplier : TensorApplier.Applier
{
private readonly int _memoriesCount;
private readonly int _memoryIndex;
public BarracudaMemoryOutputApplier(int memoriesCount, int memoryIndex)
{
_memoriesCount = memoriesCount;
_memoryIndex = memoryIndex;
}
public void Apply(TensorProxy tensorProxy, Dictionary<Agent, AgentInfo> agentInfo)
{
var agentIndex = 0;
var memorySize = (int)tensorProxy.shape[tensorProxy.shape.Length - 1];
foreach (var agent in agentInfo.Keys)
{
var memory = agent.GetMemoriesAction();
if (memory == null || memory.Count < memorySize * _memoriesCount)
{
memory = new List<float>();
memory.AddRange(Enumerable.Repeat(0f, memorySize * _memoriesCount));
}
for (var j = 0; j < memorySize; j++)
{
memory[memorySize * _memoryIndex + j] = tensorProxy.data[agentIndex, j];
}
agent.UpdateMemoriesAction(memory);
agentIndex++;
}
}
}
/// <summary>
/// The Applier for the Memory output tensor. Tensor is assumed to contain the new
/// memory data of the agents in the batch.
/// </summary>
public class MemoryOutputApplier : TensorApplier.Applier
{
public void Apply(TensorProxy tensorProxy, Dictionary<Agent, AgentInfo> agentInfo)
{
var agentIndex = 0;
var memorySize = tensorProxy.shape[tensorProxy.shape.Length - 1];
foreach (var agent in agentInfo.Keys)
{
var memory = new List<float>();
for (var j = 0; j < memorySize; j++)
{
memory.Add(tensorProxy.data[agentIndex, j]);
}
agent.UpdateMemoriesAction(memory);
agentIndex++;
}
}
}
/// <summary>
/// The Applier for the Value Estimate output tensor. Tensor is assumed to contain the
/// value estimates of the agents in the batch.
/// </summary>
public class ValueEstimateApplier : TensorApplier.Applier
{
public void Apply(TensorProxy tensorProxy, Dictionary<Agent, AgentInfo> agentInfo)
{
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
agent.UpdateValueAction(tensorProxy.data[agentIndex, 0]);
agentIndex++;
}
}
}
}