Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

176 行
7.2 KiB

from typing import Dict, Any, List, Tuple, Optional
import numpy as np
from mlagents.tf_utils.tf import tf
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.policy.tf_policy import TFPolicy
from mlagents.trainers.optimizer import Optimizer
from mlagents.trainers.trajectory import SplitObservations
from mlagents.trainers.components.reward_signals.reward_signal_factory import (
create_reward_signal,
)
from mlagents.trainers.components.bc.module import BCModule
try:
import horovod.tensorflow as hvd
except ImportError:
hvd = None
class TFOptimizer(Optimizer): # pylint: disable=W0223
def __init__(self, policy: TFPolicy, trainer_params: Dict[str, Any]):
self.sess = policy.sess
self.policy = policy
self.update_dict: Dict[str, tf.Tensor] = {}
self.value_heads: Dict[str, tf.Tensor] = {}
self.create_reward_signals(trainer_params["reward_signals"])
self.memory_in: tf.Tensor = None
self.memory_out: tf.Tensor = None
self.m_size: int = 0
self.bc_module: Optional[BCModule] = None
# Create pretrainer if needed
if "behavioral_cloning" in trainer_params:
BCModule.check_config(trainer_params["behavioral_cloning"])
self.bc_module = BCModule(
self.policy,
policy_learning_rate=trainer_params["learning_rate"],
default_batch_size=trainer_params["batch_size"],
default_num_epoch=3,
**trainer_params["behavioral_cloning"],
)
def get_trajectory_value_estimates(
self, batch: AgentBuffer, next_obs: List[np.ndarray], done: bool
) -> Tuple[Dict[str, np.ndarray], Dict[str, float]]:
feed_dict: Dict[tf.Tensor, Any] = {
self.policy.batch_size_ph: batch.num_experiences,
self.policy.sequence_length_ph: batch.num_experiences, # We want to feed data in batch-wise, not time-wise.
}
if self.policy.vec_obs_size > 0:
feed_dict[self.policy.vector_in] = batch["vector_obs"]
if self.policy.vis_obs_size > 0:
for i in range(len(self.policy.visual_in)):
_obs = batch["visual_obs%d" % i]
feed_dict[self.policy.visual_in[i]] = _obs
if self.policy.use_recurrent:
feed_dict[self.policy.memory_in] = [
np.zeros((self.policy.m_size), dtype=np.float32)
]
feed_dict[self.memory_in] = [np.zeros((self.m_size), dtype=np.float32)]
if self.policy.prev_action is not None:
feed_dict[self.policy.prev_action] = batch["prev_action"]
if self.policy.use_recurrent:
value_estimates, policy_mem, value_mem = self.sess.run(
[self.value_heads, self.policy.memory_out, self.memory_out], feed_dict
)
prev_action = (
batch["actions"][-1] if not self.policy.use_continuous_act else None
)
else:
value_estimates = self.sess.run(self.value_heads, feed_dict)
prev_action = None
policy_mem = None
value_mem = None
value_estimates = {k: np.squeeze(v, axis=1) for k, v in value_estimates.items()}
# We do this in a separate step to feed the memory outs - a further optimization would
# be to append to the obs before running sess.run.
final_value_estimates = self._get_value_estimates(
next_obs, done, policy_mem, value_mem, prev_action
)
return value_estimates, final_value_estimates
def _get_value_estimates(
self,
next_obs: List[np.ndarray],
done: bool,
policy_memory: np.ndarray = None,
value_memory: np.ndarray = None,
prev_action: np.ndarray = None,
) -> Dict[str, float]:
"""
Generates value estimates for bootstrapping.
:param experience: AgentExperience to be used for bootstrapping.
:param done: Whether or not this is the last element of the episode, in which case the value estimate will be 0.
:return: The value estimate dictionary with key being the name of the reward signal and the value the
corresponding value estimate.
"""
feed_dict: Dict[tf.Tensor, Any] = {
self.policy.batch_size_ph: 1,
self.policy.sequence_length_ph: 1,
}
vec_vis_obs = SplitObservations.from_observations(next_obs)
for i in range(len(vec_vis_obs.visual_observations)):
feed_dict[self.policy.visual_in[i]] = [vec_vis_obs.visual_observations[i]]
if self.policy.vec_obs_size > 0:
feed_dict[self.policy.vector_in] = [vec_vis_obs.vector_observations]
if policy_memory is not None:
feed_dict[self.policy.memory_in] = policy_memory
if value_memory is not None:
feed_dict[self.memory_in] = value_memory
if prev_action is not None:
feed_dict[self.policy.prev_action] = [prev_action]
value_estimates = self.sess.run(self.value_heads, feed_dict)
value_estimates = {k: float(v) for k, v in value_estimates.items()}
# If we're done, reassign all of the value estimates that need terminal states.
if done:
for k in value_estimates:
if self.reward_signals[k].use_terminal_states:
value_estimates[k] = 0.0
return value_estimates
def create_reward_signals(self, reward_signal_configs: Dict[str, Any]) -> None:
"""
Create reward signals
:param reward_signal_configs: Reward signal config.
"""
self.reward_signals = {}
# Create reward signals
for reward_signal, config in reward_signal_configs.items():
self.reward_signals[reward_signal] = create_reward_signal(
self.policy, reward_signal, config
)
self.update_dict.update(self.reward_signals[reward_signal].update_dict)
def create_optimizer_op(
self, learning_rate: tf.Tensor, name: str = "Adam"
) -> tf.train.Optimizer:
if hvd is not None:
adam_optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate * hvd.size(), name=name
)
horovod_optimizer = hvd.DistributedOptimizer(adam_optimizer)
else:
adam_optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate, name=name
)
return horovod_optimizer if hvd is not None else adam_optimizer
def _execute_model(
self, feed_dict: Dict[tf.Tensor, np.ndarray], out_dict: Dict[str, tf.Tensor]
) -> Dict[str, np.ndarray]:
"""
Executes model.
:param feed_dict: Input dictionary mapping nodes to input data.
:param out_dict: Output dictionary mapping names to nodes.
:return: Dictionary mapping names to input data.
"""
network_out = self.sess.run(list(out_dict.values()), feed_dict=feed_dict)
run_out = dict(zip(list(out_dict.keys()), network_out))
return run_out
def _make_zero_mem(self, m_size: int, length: int) -> List[np.ndarray]:
return [
np.zeros((m_size), dtype=np.float32)
for i in range(0, length, self.policy.sequence_length)
]