Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

87 行
2.9 KiB

using System;
using UnityEngine;
namespace MLAgents.Policies
{
/// <summary>
/// Whether the action space is discrete or continuous.
/// </summary>
internal enum SpaceType
{
/// <summary>
/// Discrete action space: a fixed number of options are available.
/// </summary>
Discrete,
/// <summary>
/// Continuous action space: each action can take on a float value.
/// </summary>
Continuous
}
/// <summary>
/// Holds information about the Brain. It defines what are the inputs and outputs of the
/// decision process.
/// </summary>
[Serializable]
internal class BrainParameters
{
/// <summary>
/// If continuous : The length of the float vector that represents the state.
/// If discrete : The number of possible values the state can take.
/// </summary>
public int vectorObservationSize = 1;
/// <summary>
/// Stacking refers to concatenating the observations across multiple frames. This field
/// indicates the number of frames to concatenate across.
/// </summary>
[Range(1, 50)] public int numStackedVectorObservations = 1;
/// <summary>
/// If continuous : The length of the float vector that represents the action.
/// If discrete : The number of possible values the action can take.
/// </summary>
public int[] vectorActionSize = new[] {1};
/// <summary>
/// The list of strings describing what the actions correspond to.
/// </summary>
public string[] vectorActionDescriptions;
/// <summary>
/// Defines if the action is discrete or continuous.
/// </summary>
public SpaceType vectorActionSpaceType = SpaceType.Discrete;
public int numActions
{
get{
switch(vectorActionSpaceType){
case SpaceType.Discrete:
return vectorActionSize.Length;
case SpaceType.Continuous:
return vectorActionSize[0];
default:
return 0;
}
}
}
/// <summary>
/// Deep clones the BrainParameter object.
/// </summary>
/// <returns> A new BrainParameter object with the same values as the original.</returns>
public BrainParameters Clone()
{
return new BrainParameters
{
vectorObservationSize = vectorObservationSize,
numStackedVectorObservations = numStackedVectorObservations,
vectorActionSize = (int[])vectorActionSize.Clone(),
vectorActionDescriptions = (string[])vectorActionDescriptions.Clone(),
vectorActionSpaceType = vectorActionSpaceType
};
}
}
}