您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
142 行
6.4 KiB
142 行
6.4 KiB
using System.Collections.Generic;
|
|
using Barracuda;
|
|
|
|
namespace MLAgents.InferenceBrain
|
|
{
|
|
/// <summary>
|
|
/// Mapping between Tensor names and generators.
|
|
/// A TensorGenerator implements a Dictionary of strings (node names) to an Action.
|
|
/// The Action take as argument the tensor, the current batch size and a Dictionary of
|
|
/// Agent to AgentInfo corresponding to the current batch.
|
|
/// Each Generator reshapes and fills the data of the tensor based of the data of the batch.
|
|
/// When the TensorProxy is an Input to the model, the shape of the Tensor will be modified
|
|
/// depending on the current batch size and the data of the Tensor will be filled using the
|
|
/// Dictionary of Agent to AgentInfo.
|
|
/// When the TensorProxy is an Output of the model, only the shape of the Tensor will be
|
|
/// modified using the current batch size. The data will be pre-filled with zeros.
|
|
/// </summary>
|
|
internal class TensorGenerator
|
|
{
|
|
public interface IGenerator
|
|
{
|
|
/// <summary>
|
|
/// Modifies the data inside a Tensor according to the information contained in the
|
|
/// AgentInfos contained in the current batch.
|
|
/// </summary>
|
|
/// <param name="tensorProxy"> The tensor the data and shape will be modified</param>
|
|
/// <param name="batchSize"> The number of agents present in the current batch</param>
|
|
/// <param name="infos"> List of AgentInfos containing the
|
|
/// information that will be used to populate the tensor's data</param>
|
|
void Generate(
|
|
TensorProxy tensorProxy, int batchSize, IEnumerable<AgentInfoSensorsPair> infos);
|
|
}
|
|
|
|
readonly Dictionary<string, IGenerator> m_Dict = new Dictionary<string, IGenerator>();
|
|
|
|
/// <summary>
|
|
/// Returns a new TensorGenerators object.
|
|
/// </summary>
|
|
/// <param name="seed"> The seed the Generators will be initialized with.</param>
|
|
/// <param name="allocator"> Tensor allocator</param>
|
|
/// <param name="memories">Dictionary of AgentInfo.id to memory for use in the inference model.</param>
|
|
/// <param name="barracudaModel"></param>
|
|
public TensorGenerator(
|
|
int seed,
|
|
ITensorAllocator allocator,
|
|
Dictionary<int, List<float>> memories,
|
|
object barracudaModel = null)
|
|
{
|
|
// Generator for Inputs
|
|
m_Dict[TensorNames.BatchSizePlaceholder] =
|
|
new BatchSizeGenerator(allocator);
|
|
m_Dict[TensorNames.SequenceLengthPlaceholder] =
|
|
new SequenceLengthGenerator(allocator);
|
|
m_Dict[TensorNames.RecurrentInPlaceholder] =
|
|
new RecurrentInputGenerator(allocator, memories);
|
|
|
|
if (barracudaModel != null)
|
|
{
|
|
var model = (Model)barracudaModel;
|
|
for (var i = 0; i < model.memories.Count; i++)
|
|
{
|
|
m_Dict[model.memories[i].input] =
|
|
new BarracudaRecurrentInputGenerator(i, allocator, memories);
|
|
}
|
|
}
|
|
|
|
m_Dict[TensorNames.PreviousActionPlaceholder] =
|
|
new PreviousActionInputGenerator(allocator);
|
|
m_Dict[TensorNames.ActionMaskPlaceholder] =
|
|
new ActionMaskInputGenerator(allocator);
|
|
m_Dict[TensorNames.RandomNormalEpsilonPlaceholder] =
|
|
new RandomNormalInputGenerator(seed, allocator);
|
|
|
|
|
|
// Generators for Outputs
|
|
m_Dict[TensorNames.ActionOutput] = new BiDimensionalOutputGenerator(allocator);
|
|
m_Dict[TensorNames.RecurrentOutput] = new BiDimensionalOutputGenerator(allocator);
|
|
m_Dict[TensorNames.ValueEstimateOutput] = new BiDimensionalOutputGenerator(allocator);
|
|
}
|
|
|
|
public void InitializeObservations(List<ISensor> sensors, ITensorAllocator allocator)
|
|
{
|
|
// Loop through the sensors on a representative agent.
|
|
// For vector observations, add the index to the (single) VectorObservationGenerator
|
|
// For visual observations, make a VisualObservationInputGenerator
|
|
var visIndex = 0;
|
|
VectorObservationGenerator vecObsGen = null;
|
|
for (var sensorIndex = 0; sensorIndex < sensors.Count; sensorIndex++)
|
|
{
|
|
var sensor = sensors[sensorIndex];
|
|
var shape = sensor.GetObservationShape();
|
|
// TODO generalize - we currently only have vector or visual, but can't handle "2D" observations
|
|
var isVectorSensor = (shape.Length == 1);
|
|
if (isVectorSensor)
|
|
{
|
|
if (vecObsGen == null)
|
|
{
|
|
vecObsGen = new VectorObservationGenerator(allocator);
|
|
}
|
|
|
|
vecObsGen.AddSensorIndex(sensorIndex);
|
|
}
|
|
else
|
|
{
|
|
m_Dict[TensorNames.VisualObservationPlaceholderPrefix + visIndex] =
|
|
new VisualObservationInputGenerator(sensorIndex, allocator);
|
|
visIndex++;
|
|
}
|
|
}
|
|
|
|
if (vecObsGen != null)
|
|
{
|
|
m_Dict[TensorNames.VectorObservationPlacholder] = vecObsGen;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Populates the data of the tensor inputs given the data contained in the current batch
|
|
/// of agents.
|
|
/// </summary>
|
|
/// <param name="tensors"> Enumerable of tensors that will be modified.</param>
|
|
/// <param name="currentBatchSize"> The number of agents present in the current batch
|
|
/// </param>
|
|
/// <param name="infos"> List of AgentsInfos and Sensors that contains the
|
|
/// data that will be used to modify the tensors</param>
|
|
/// <exception cref="UnityAgentsException"> One of the tensor does not have an
|
|
/// associated generator.</exception>
|
|
public void GenerateTensors(
|
|
IEnumerable<TensorProxy> tensors, int currentBatchSize, IEnumerable<AgentInfoSensorsPair> infos)
|
|
{
|
|
foreach (var tensor in tensors)
|
|
{
|
|
if (!m_Dict.ContainsKey(tensor.name))
|
|
{
|
|
throw new UnityAgentsException(
|
|
$"Unknown tensorProxy expected as input : {tensor.name}");
|
|
}
|
|
m_Dict[tensor.name].Generate(tensor, currentBatchSize, infos);
|
|
}
|
|
}
|
|
}
|
|
}
|