Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

174 行
6.6 KiB

# # Unity ML-Agents Toolkit
# ## ML-Agent Learning (Behavioral Cloning)
# Contains an implementation of Behavioral Cloning Algorithm
import logging
import numpy as np
import tensorflow as tf
from mlagents.envs import AllBrainInfo
from mlagents.trainers import ActionInfoOutputs
from mlagents.trainers.bc.policy import BCPolicy
from mlagents.trainers.buffer import Buffer
from mlagents.trainers.trainer import Trainer
logger = logging.getLogger("mlagents.trainers")
class BCTrainer(Trainer):
"""The BCTrainer is an implementation of Behavioral Cloning."""
def __init__(self, brain, trainer_parameters, training, load, seed, run_id):
"""
Responsible for collecting experiences and training PPO model.
:param trainer_parameters: The parameters for the trainer (dictionary).
:param training: Whether the trainer is set for training.
:param load: Whether the model should be loaded.
:param seed: The seed the model will be initialized with
:param run_id: The identifier of the current run
"""
super(BCTrainer, self).__init__(brain, trainer_parameters, training, run_id)
self.policy = BCPolicy(seed, brain, trainer_parameters, load)
self.n_sequences = 1
self.cumulative_rewards = {}
self.episode_steps = {}
self.stats = {
"Losses/Cloning Loss": [],
"Environment/Episode Length": [],
"Environment/Cumulative Reward": [],
}
self.batches_per_epoch = trainer_parameters["batches_per_epoch"]
self.demonstration_buffer = Buffer()
self.evaluation_buffer = Buffer()
@property
def parameters(self):
"""
Returns the trainer parameters of the trainer.
"""
return self.trainer_parameters
@property
def get_max_steps(self):
"""
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
:return: The maximum number of steps of the trainer
"""
return float(self.trainer_parameters["max_steps"])
@property
def get_step(self):
"""
Returns the number of steps the trainer has performed
:return: the step count of the trainer
"""
return self.policy.get_current_step()
def increment_step(self):
"""
Increment the step count of the trainer
"""
self.policy.increment_step()
return
def add_experiences(
self,
curr_info: AllBrainInfo,
next_info: AllBrainInfo,
take_action_outputs: ActionInfoOutputs,
) -> None:
"""
Adds experiences to each agent's experience history.
:param curr_info: Current AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo).
:param next_info: Next AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo).
:param take_action_outputs: The outputs of the take action method.
"""
# Used to collect information about student performance.
info_student = curr_info[self.brain_name]
next_info_student = next_info[self.brain_name]
for agent_id in info_student.agents:
self.evaluation_buffer[agent_id].last_brain_info = info_student
for agent_id in next_info_student.agents:
stored_info_student = self.evaluation_buffer[agent_id].last_brain_info
if stored_info_student is None:
continue
else:
next_idx = next_info_student.agents.index(agent_id)
if agent_id not in self.cumulative_rewards:
self.cumulative_rewards[agent_id] = 0
self.cumulative_rewards[agent_id] += next_info_student.rewards[next_idx]
if not next_info_student.local_done[next_idx]:
if agent_id not in self.episode_steps:
self.episode_steps[agent_id] = 0
self.episode_steps[agent_id] += 1
def process_experiences(
self, current_info: AllBrainInfo, next_info: AllBrainInfo
) -> None:
"""
Checks agent histories for processing condition, and processes them as necessary.
Processing involves calculating value and advantage targets for model updating step.
:param current_info: Current AllBrainInfo
:param next_info: Next AllBrainInfo
"""
info_student = next_info[self.brain_name]
for l in range(len(info_student.agents)):
if info_student.local_done[l]:
agent_id = info_student.agents[l]
self.stats["Environment/Cumulative Reward"].append(
self.cumulative_rewards.get(agent_id, 0)
)
self.stats["Environment/Episode Length"].append(
self.episode_steps.get(agent_id, 0)
)
self.reward_buffer.appendleft(self.cumulative_rewards.get(agent_id, 0))
self.cumulative_rewards[agent_id] = 0
self.episode_steps[agent_id] = 0
def end_episode(self):
"""
A signal that the Episode has ended. The buffer must be reset.
Get only called when the academy resets.
"""
self.evaluation_buffer.reset_local_buffers()
for agent_id in self.cumulative_rewards:
self.cumulative_rewards[agent_id] = 0
for agent_id in self.episode_steps:
self.episode_steps[agent_id] = 0
def is_ready_update(self):
"""
Returns whether or not the trainer has enough elements to run update model
:return: A boolean corresponding to whether or not update_model() can be run
"""
return (
len(self.demonstration_buffer.update_buffer["actions"]) > self.n_sequences
)
def update_policy(self):
"""
Updates the policy.
"""
self.demonstration_buffer.update_buffer.shuffle()
batch_losses = []
num_batches = min(
len(self.demonstration_buffer.update_buffer["actions"]) // self.n_sequences,
self.batches_per_epoch,
)
for i in range(num_batches):
update_buffer = self.demonstration_buffer.update_buffer
start = i * self.n_sequences
end = (i + 1) * self.n_sequences
mini_batch = update_buffer.make_mini_batch(start, end)
run_out = self.policy.update(mini_batch, self.n_sequences)
loss = run_out["policy_loss"]
batch_losses.append(loss)
if len(batch_losses) > 0:
self.stats["Losses/Cloning Loss"].append(np.mean(batch_losses))
else:
self.stats["Losses/Cloning Loss"].append(0)