Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

425 行
14 KiB

import json
import os
from unittest.mock import *
import yaml
import pytest
from mlagents.trainers.trainer_controller import TrainerController
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.bc.offline_trainer import OfflineBCTrainer
from mlagents.trainers.bc.online_trainer import OnlineBCTrainer
from mlagents.envs.exception import UnityEnvironmentException
@pytest.fixture
def dummy_config():
return yaml.load(
'''
default:
trainer: ppo
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
use_curiosity: false
curiosity_strength: 0.0
curiosity_enc_size: 1
''')
@pytest.fixture
def dummy_online_bc_config():
return yaml.load(
'''
default:
trainer: online_bc
brain_to_imitate: ExpertBrain
batches_per_epoch: 16
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
use_curiosity: false
curiosity_strength: 0.0
curiosity_enc_size: 1
''')
@pytest.fixture
def dummy_offline_bc_config():
return yaml.load(
'''
default:
trainer: offline_bc
demo_path: '''
+ os.path.dirname(os.path.abspath(__file__)) + '''/test.demo
batches_per_epoch: 16
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
use_curiosity: false
curiosity_strength: 0.0
curiosity_enc_size: 1
''')
@pytest.fixture
def dummy_offline_bc_config_with_override():
base = dummy_offline_bc_config()
base['testbrain'] = {}
base['testbrain']['normalize'] = False
return base
@pytest.fixture
def dummy_bad_config():
return yaml.load(
'''
default:
trainer: incorrect_trainer
brain_to_imitate: ExpertBrain
batches_per_epoch: 16
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
gamma: 0.99
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
''')
@pytest.fixture
def basic_trainer_controller(brain_info):
return TrainerController(
model_path='test_model_path',
summaries_dir='test_summaries_dir',
run_id='test_run_id',
save_freq=100,
meta_curriculum=None,
load=True,
train=True,
keep_checkpoints=False,
lesson=None,
external_brains={'testbrain': brain_info},
training_seed=99
)
@patch('numpy.random.seed')
@patch('tensorflow.set_random_seed')
def test_initialization_seed(numpy_random_seed, tensorflow_set_seed):
seed = 27
TrainerController('', '', '1', 1, None, True, False, False, None, {}, seed)
numpy_random_seed.assert_called_with(seed)
tensorflow_set_seed.assert_called_with(seed)
def assert_bc_trainer_constructed(trainer_cls, input_config, tc, expected_brain_info, expected_config):
def mock_constructor(self, brain, trainer_params, training, load, seed, run_id):
assert(brain == expected_brain_info)
assert(trainer_params == expected_config)
assert(training == tc.train_model)
assert(load == tc.load_model)
assert(seed == tc.seed)
assert(run_id == tc.run_id)
with patch.object(trainer_cls, "__init__", mock_constructor):
tc.initialize_trainers(input_config)
assert('testbrain' in tc.trainers)
assert(isinstance(tc.trainers['testbrain'], trainer_cls))
def assert_ppo_trainer_constructed(input_config, tc, expected_brain_info,
expected_config, expected_reward_buff_cap=0):
def mock_constructor(self, brain, reward_buff_cap, trainer_parameters, training, load, seed, run_id):
assert(brain == expected_brain_info)
assert(trainer_parameters == expected_config)
assert(reward_buff_cap == expected_reward_buff_cap)
assert(training == tc.train_model)
assert(load == tc.load_model)
assert(seed == tc.seed)
assert(run_id == tc.run_id)
with patch.object(PPOTrainer, "__init__", mock_constructor):
tc.initialize_trainers(input_config)
assert('testbrain' in tc.trainers)
assert(isinstance(tc.trainers['testbrain'], PPOTrainer))
@patch('mlagents.envs.BrainInfo')
def test_initialize_trainer_parameters_uses_defaults(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
full_config = dummy_offline_bc_config()
expected_config = full_config['default']
expected_config['summary_path'] = tc.summaries_dir + '/test_run_id_testbrain'
expected_config['model_path'] = tc.model_path + '/testbrain'
expected_config['keep_checkpoints'] = tc.keep_checkpoints
assert_bc_trainer_constructed(OfflineBCTrainer, full_config, tc, brain_info_mock, expected_config)
@patch('mlagents.envs.BrainInfo')
def test_initialize_trainer_parameters_override_defaults(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
full_config = dummy_offline_bc_config_with_override()
expected_config = full_config['default']
expected_config['summary_path'] = tc.summaries_dir + '/test_run_id_testbrain'
expected_config['model_path'] = tc.model_path + '/testbrain'
expected_config['keep_checkpoints'] = tc.keep_checkpoints
# Override value from specific brain config
expected_config['normalize'] = False
assert_bc_trainer_constructed(OfflineBCTrainer, full_config, tc, brain_info_mock, expected_config)
@patch('mlagents.envs.BrainInfo')
def test_initialize_online_bc_trainer(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
full_config = dummy_online_bc_config()
expected_config = full_config['default']
expected_config['summary_path'] = tc.summaries_dir + '/test_run_id_testbrain'
expected_config['model_path'] = tc.model_path + '/testbrain'
expected_config['keep_checkpoints'] = tc.keep_checkpoints
assert_bc_trainer_constructed(OnlineBCTrainer, full_config, tc, brain_info_mock, expected_config)
@patch('mlagents.envs.BrainInfo')
def test_initialize_ppo_trainer(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
full_config = dummy_config()
expected_config = full_config['default']
expected_config['summary_path'] = tc.summaries_dir + '/test_run_id_testbrain'
expected_config['model_path'] = tc.model_path + '/testbrain'
expected_config['keep_checkpoints'] = tc.keep_checkpoints
assert_ppo_trainer_constructed(full_config, tc, brain_info_mock, expected_config)
@patch('mlagents.envs.BrainInfo')
def test_initialize_invalid_trainer_raises_exception(BrainInfoMock):
brain_info_mock = BrainInfoMock()
tc = basic_trainer_controller(brain_info_mock)
bad_config = dummy_bad_config()
try:
tc.initialize_trainers(bad_config)
assert(1 == 0, "Initialize trainers with bad config did not raise an exception.")
except UnityEnvironmentException:
pass
def trainer_controller_with_start_learning_mocks():
trainer_mock = MagicMock()
trainer_mock.get_step = 0
trainer_mock.get_max_steps = 5
trainer_mock.parameters = {'some': 'parameter'}
trainer_mock.write_tensorboard_text = MagicMock()
brain_info_mock = MagicMock()
tc = basic_trainer_controller(brain_info_mock)
tc.initialize_trainers = MagicMock()
tc.trainers = {'testbrain': trainer_mock}
tc.take_step = MagicMock()
def take_step_sideeffect(env, curr_info):
tc.trainers['testbrain'].get_step += 1
if tc.trainers['testbrain'].get_step > 10:
raise KeyboardInterrupt
tc.take_step.side_effect = take_step_sideeffect
tc._export_graph = MagicMock()
tc._save_model = MagicMock()
return tc, trainer_mock
@patch('tensorflow.reset_default_graph')
def test_start_learning_trains_forever_if_no_train_model(tf_reset_graph):
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
tc.train_model = False
trainer_config = dummy_config()
tf_reset_graph.return_value = None
env_mock = MagicMock()
env_mock.close = MagicMock()
env_mock.reset = MagicMock()
tc.start_learning(env_mock, trainer_config)
tf_reset_graph.assert_called_once()
tc.initialize_trainers.assert_called_once_with(trainer_config)
env_mock.reset.assert_called_once()
assert (tc.take_step.call_count == 11)
tc._export_graph.assert_not_called()
tc._save_model.assert_not_called()
env_mock.close.assert_called_once()
@patch('tensorflow.reset_default_graph')
def test_start_learning_trains_until_max_steps_then_saves(tf_reset_graph):
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
trainer_config = dummy_config()
tf_reset_graph.return_value = None
brain_info_mock = MagicMock()
env_mock = MagicMock()
env_mock.close = MagicMock()
env_mock.reset = MagicMock(return_value=brain_info_mock)
tc.start_learning(env_mock, trainer_config)
tf_reset_graph.assert_called_once()
tc.initialize_trainers.assert_called_once_with(trainer_config)
env_mock.reset.assert_called_once()
assert(tc.take_step.call_count == trainer_mock.get_max_steps + 1)
env_mock.close.assert_called_once()
tc._save_model.assert_called_once_with(steps=6)
def test_start_learning_updates_meta_curriculum_lesson_number():
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
trainer_config = dummy_config()
brain_info_mock = MagicMock()
env_mock = MagicMock()
env_mock.close = MagicMock()
env_mock.reset = MagicMock(return_value=brain_info_mock)
meta_curriculum_mock = MagicMock()
meta_curriculum_mock.set_all_curriculums_to_lesson_num = MagicMock()
tc.meta_curriculum = meta_curriculum_mock
tc.lesson = 5
tc.start_learning(env_mock, trainer_config)
meta_curriculum_mock.set_all_curriculums_to_lesson_num.assert_called_once_with(tc.lesson)
def trainer_controller_with_take_step_mocks():
trainer_mock = MagicMock()
trainer_mock.get_step = 0
trainer_mock.get_max_steps = 5
trainer_mock.parameters = {'some': 'parameter'}
trainer_mock.write_tensorboard_text = MagicMock()
brain_info_mock = MagicMock()
tc = basic_trainer_controller(brain_info_mock)
tc.trainers = {'testbrain': trainer_mock}
return tc, trainer_mock
def test_take_step_resets_env_on_global_done():
tc, trainer_mock = trainer_controller_with_take_step_mocks()
brain_info_mock = MagicMock()
action_data_mock_out = [None, None, None, None, None]
trainer_mock.take_action = MagicMock(return_value=action_data_mock_out)
trainer_mock.add_experiences = MagicMock()
trainer_mock.process_experiences = MagicMock()
trainer_mock.update_policy = MagicMock()
trainer_mock.write_summary = MagicMock()
trainer_mock.trainer.increment_step_and_update_last_reward = MagicMock()
env_mock = MagicMock()
step_data_mock_out = MagicMock()
env_mock.step = MagicMock(return_value=step_data_mock_out)
env_mock.close = MagicMock()
env_mock.reset = MagicMock(return_value=brain_info_mock)
env_mock.global_done = True
tc.take_step(env_mock, brain_info_mock)
env_mock.reset.assert_called_once()
def test_take_step_adds_experiences_to_trainer_and_trains():
tc, trainer_mock = trainer_controller_with_take_step_mocks()
curr_info_mock = MagicMock()
trainer_action_output_mock = [
'action',
'memory',
'actiontext',
'value',
'output',
]
trainer_mock.take_action = MagicMock(return_value=trainer_action_output_mock)
trainer_mock.is_ready_update = MagicMock(return_value=True)
env_mock = MagicMock()
env_step_output_mock = MagicMock()
env_mock.step = MagicMock(return_value=env_step_output_mock)
env_mock.close = MagicMock()
env_mock.reset = MagicMock(return_value=curr_info_mock)
env_mock.global_done = False
tc.take_step(env_mock, curr_info_mock)
env_mock.reset.assert_not_called()
trainer_mock.take_action.assert_called_once_with(curr_info_mock)
env_mock.step.assert_called_once_with(
vector_action={'testbrain': trainer_action_output_mock[0]},
memory={'testbrain': trainer_action_output_mock[1]},
text_action={'testbrain': trainer_action_output_mock[2]},
value={'testbrain': trainer_action_output_mock[3]}
)
trainer_mock.add_experiences.assert_called_once_with(
curr_info_mock, env_step_output_mock, trainer_action_output_mock[4]
)
trainer_mock.process_experiences.assert_called_once_with(curr_info_mock, env_step_output_mock)
trainer_mock.update_policy.assert_called_once()
trainer_mock.write_summary.assert_called_once()
trainer_mock.increment_step_and_update_last_reward.assert_called_once()