您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
497 行
19 KiB
497 行
19 KiB
from collections import defaultdict
|
|
from collections.abc import MutableMapping
|
|
import enum
|
|
import itertools
|
|
from typing import BinaryIO, DefaultDict, List, Tuple, Union, Optional
|
|
|
|
import numpy as np
|
|
import h5py
|
|
|
|
from mlagents_envs.exception import UnityException
|
|
|
|
# Elements in the buffer can be np.ndarray, or in the case of teammate obs, actions, rewards,
|
|
# a List of np.ndarray. This is done so that we don't have duplicated np.ndarrays, only references.
|
|
BufferEntry = Union[np.ndarray, List[np.ndarray]]
|
|
|
|
|
|
class BufferException(UnityException):
|
|
"""
|
|
Related to errors with the Buffer.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
class BufferKey(enum.Enum):
|
|
ACTION_MASK = "action_mask"
|
|
CONTINUOUS_ACTION = "continuous_action"
|
|
NEXT_CONT_ACTION = "next_continuous_action"
|
|
CONTINUOUS_LOG_PROBS = "continuous_log_probs"
|
|
DISCRETE_ACTION = "discrete_action"
|
|
NEXT_DISC_ACTION = "next_discrete_action"
|
|
DISCRETE_LOG_PROBS = "discrete_log_probs"
|
|
DONE = "done"
|
|
ENVIRONMENT_REWARDS = "environment_rewards"
|
|
MASKS = "masks"
|
|
MEMORY = "memory"
|
|
CRITIC_MEMORY = "critic_memory"
|
|
PREV_ACTION = "prev_action"
|
|
|
|
ADVANTAGES = "advantages"
|
|
DISCOUNTED_RETURNS = "discounted_returns"
|
|
|
|
GROUP_DONES = "group_dones"
|
|
GROUPMATE_REWARDS = "groupmate_reward"
|
|
GROUP_REWARD = "group_reward"
|
|
GROUP_CONTINUOUS_ACTION = "group_continuous_action"
|
|
GROUP_DISCRETE_ACTION = "group_discrete_aaction"
|
|
GROUP_NEXT_CONT_ACTION = "group_next_cont_action"
|
|
GROUP_NEXT_DISC_ACTION = "group_next_disc_action"
|
|
|
|
|
|
class ObservationKeyPrefix(enum.Enum):
|
|
OBSERVATION = "obs"
|
|
NEXT_OBSERVATION = "next_obs"
|
|
|
|
GROUP_OBSERVATION = "group_obs"
|
|
NEXT_GROUP_OBSERVATION = "next_group_obs"
|
|
|
|
|
|
class RewardSignalKeyPrefix(enum.Enum):
|
|
# Reward signals
|
|
REWARDS = "rewards"
|
|
VALUE_ESTIMATES = "value_estimates"
|
|
RETURNS = "returns"
|
|
ADVANTAGE = "advantage"
|
|
BASELINES = "baselines"
|
|
|
|
|
|
AgentBufferKey = Union[
|
|
BufferKey, Tuple[ObservationKeyPrefix, int], Tuple[RewardSignalKeyPrefix, str]
|
|
]
|
|
|
|
|
|
class RewardSignalUtil:
|
|
@staticmethod
|
|
def rewards_key(name: str) -> AgentBufferKey:
|
|
return RewardSignalKeyPrefix.REWARDS, name
|
|
|
|
@staticmethod
|
|
def value_estimates_key(name: str) -> AgentBufferKey:
|
|
return RewardSignalKeyPrefix.RETURNS, name
|
|
|
|
@staticmethod
|
|
def returns_key(name: str) -> AgentBufferKey:
|
|
return RewardSignalKeyPrefix.RETURNS, name
|
|
|
|
@staticmethod
|
|
def advantage_key(name: str) -> AgentBufferKey:
|
|
return RewardSignalKeyPrefix.ADVANTAGE, name
|
|
|
|
@staticmethod
|
|
def baseline_estimates_key(name: str) -> AgentBufferKey:
|
|
return RewardSignalKeyPrefix.BASELINES, name
|
|
|
|
|
|
class AgentBufferField(list):
|
|
"""
|
|
AgentBufferField is a list of numpy arrays, or List[np.ndarray] for group entries.
|
|
When an agent collects a field, you can add it to its AgentBufferField with the append method.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.padding_value = 0
|
|
super().__init__()
|
|
|
|
def __str__(self) -> str:
|
|
return str(np.array(self).shape)
|
|
|
|
def append(self, element: np.ndarray, padding_value: float = 0.0) -> None:
|
|
"""
|
|
Adds an element to this list. Also lets you change the padding
|
|
type, so that it can be set on append (e.g. action_masks should
|
|
be padded with 1.)
|
|
:param element: The element to append to the list.
|
|
:param padding_value: The value used to pad when get_batch is called.
|
|
"""
|
|
super().append(element)
|
|
self.padding_value = padding_value
|
|
|
|
def set(self, data: List[BufferEntry]) -> None:
|
|
"""
|
|
Sets the list of BufferEntry to the input data
|
|
:param data: The BufferEntry list to be set.
|
|
"""
|
|
self[:] = []
|
|
self[:] = data
|
|
|
|
def get_batch(
|
|
self,
|
|
batch_size: int = None,
|
|
training_length: Optional[int] = 1,
|
|
sequential: bool = True,
|
|
) -> List[BufferEntry]:
|
|
"""
|
|
Retrieve the last batch_size elements of length training_length
|
|
from the list of np.array
|
|
:param batch_size: The number of elements to retrieve. If None:
|
|
All elements will be retrieved.
|
|
:param training_length: The length of the sequence to be retrieved. If
|
|
None: only takes one element.
|
|
:param sequential: If true and training_length is not None: the elements
|
|
will not repeat in the sequence. [a,b,c,d,e] with training_length = 2 and
|
|
sequential=True gives [[0,a],[b,c],[d,e]]. If sequential=False gives
|
|
[[a,b],[b,c],[c,d],[d,e]]
|
|
"""
|
|
if training_length is None:
|
|
training_length = 1
|
|
if sequential:
|
|
# The sequences will not have overlapping elements (this involves padding)
|
|
leftover = len(self) % training_length
|
|
# leftover is the number of elements in the first sequence (this sequence might need 0 padding)
|
|
if batch_size is None:
|
|
# retrieve the maximum number of elements
|
|
batch_size = len(self) // training_length + 1 * (leftover != 0)
|
|
# The maximum number of sequences taken from a list of length len(self) without overlapping
|
|
# with padding is equal to batch_size
|
|
if batch_size > (len(self) // training_length + 1 * (leftover != 0)):
|
|
raise BufferException(
|
|
"The batch size and training length requested for get_batch where"
|
|
" too large given the current number of data points."
|
|
)
|
|
if batch_size * training_length > len(self):
|
|
padding = np.array(self[-1], dtype=np.float32) * self.padding_value
|
|
return [padding] * (training_length - leftover) + self[:]
|
|
|
|
else:
|
|
return self[len(self) - batch_size * training_length :]
|
|
else:
|
|
# The sequences will have overlapping elements
|
|
if batch_size is None:
|
|
# retrieve the maximum number of elements
|
|
batch_size = len(self) - training_length + 1
|
|
# The number of sequences of length training_length taken from a list of len(self) elements
|
|
# with overlapping is equal to batch_size
|
|
if (len(self) - training_length + 1) < batch_size:
|
|
raise BufferException(
|
|
"The batch size and training length requested for get_batch where"
|
|
" too large given the current number of data points."
|
|
)
|
|
tmp_list: List[np.ndarray] = []
|
|
for end in range(len(self) - batch_size + 1, len(self) + 1):
|
|
tmp_list += self[end - training_length : end]
|
|
return tmp_list
|
|
|
|
def reset_field(self) -> None:
|
|
"""
|
|
Resets the AgentBufferField
|
|
"""
|
|
self[:] = []
|
|
|
|
def padded_to_batch(
|
|
self, pad_value: np.float = 0, dtype: np.dtype = np.float32
|
|
) -> Union[np.ndarray, List[np.ndarray]]:
|
|
"""
|
|
Converts this AgentBufferField (which is a List[BufferEntry]) into a numpy array
|
|
with first dimension equal to the length of this AgentBufferField. If this AgentBufferField
|
|
contains a List[List[BufferEntry]] (i.e., in the case of group observations), return a List
|
|
containing numpy arrays or tensors, of length equal to the maximum length of an entry. Missing
|
|
For entries with less than that length, the array will be padded with pad_value.
|
|
:param pad_value: Value to pad List AgentBufferFields, when there are less than the maximum
|
|
number of agents present.
|
|
:param dtype: Dtype of output numpy array.
|
|
:return: Numpy array or List of numpy arrays representing this AgentBufferField, where the first
|
|
dimension is equal to the length of the AgentBufferField.
|
|
"""
|
|
if len(self) > 0 and not isinstance(self[0], list):
|
|
return np.asanyarray(self, dytpe=dtype)
|
|
|
|
shape = None
|
|
for _entry in self:
|
|
# _entry could be an empty list if there are no group agents in this
|
|
# step. Find the first non-empty list and use that shape.
|
|
if _entry:
|
|
shape = _entry[0].shape
|
|
break
|
|
# If there were no groupmate agents in the entire batch, return an empty List.
|
|
if shape is None:
|
|
return []
|
|
|
|
# Convert to numpy array while padding with 0's
|
|
new_list = list(
|
|
map(
|
|
lambda x: np.asanyarray(x, dtype=dtype),
|
|
itertools.zip_longest(*self, fillvalue=np.full(shape, pad_value)),
|
|
)
|
|
)
|
|
return new_list
|
|
|
|
|
|
class AgentBuffer(MutableMapping):
|
|
"""
|
|
AgentBuffer contains a dictionary of AgentBufferFields. Each agent has his own AgentBuffer.
|
|
The keys correspond to the name of the field. Example: state, action
|
|
"""
|
|
|
|
# Whether or not to validate the types of keys at runtime
|
|
# This should be off for training, but enabled for testing
|
|
CHECK_KEY_TYPES_AT_RUNTIME = False
|
|
|
|
def __init__(self):
|
|
self.last_brain_info = None
|
|
self.last_take_action_outputs = None
|
|
self._fields: DefaultDict[AgentBufferKey, AgentBufferField] = defaultdict(
|
|
AgentBufferField
|
|
)
|
|
|
|
def __str__(self):
|
|
return ", ".join(
|
|
["'{}' : {}".format(k, str(self[k])) for k in self._fields.keys()]
|
|
)
|
|
|
|
def reset_agent(self) -> None:
|
|
"""
|
|
Resets the AgentBuffer
|
|
"""
|
|
for f in self._fields.values():
|
|
f.reset_field()
|
|
self.last_brain_info = None
|
|
self.last_take_action_outputs = None
|
|
|
|
@staticmethod
|
|
def _check_key(key):
|
|
if isinstance(key, BufferKey):
|
|
return
|
|
if isinstance(key, tuple):
|
|
key0, key1 = key
|
|
if isinstance(key0, ObservationKeyPrefix):
|
|
if isinstance(key1, int):
|
|
return
|
|
raise KeyError(f"{key} has type ({type(key0)}, {type(key1)})")
|
|
if isinstance(key0, RewardSignalKeyPrefix):
|
|
if isinstance(key1, str):
|
|
return
|
|
raise KeyError(f"{key} has type ({type(key0)}, {type(key1)})")
|
|
raise KeyError(f"{key} is a {type(key)}")
|
|
|
|
@staticmethod
|
|
def _encode_key(key: AgentBufferKey) -> str:
|
|
"""
|
|
Convert the key to a string representation so that it can be used for serialization.
|
|
"""
|
|
if isinstance(key, BufferKey):
|
|
return key.value
|
|
prefix, suffix = key
|
|
return f"{prefix.value}:{suffix}"
|
|
|
|
@staticmethod
|
|
def _decode_key(encoded_key: str) -> AgentBufferKey:
|
|
"""
|
|
Convert the string representation back to a key after serialization.
|
|
"""
|
|
# Simple case: convert the string directly to a BufferKey
|
|
try:
|
|
return BufferKey(encoded_key)
|
|
except ValueError:
|
|
pass
|
|
|
|
# Not a simple key, so split into two parts
|
|
prefix_str, _, suffix_str = encoded_key.partition(":")
|
|
|
|
# See if it's an ObservationKeyPrefix first
|
|
try:
|
|
return ObservationKeyPrefix(prefix_str), int(suffix_str)
|
|
except ValueError:
|
|
pass
|
|
|
|
# If not, it had better be a RewardSignalKeyPrefix
|
|
try:
|
|
return RewardSignalKeyPrefix(prefix_str), suffix_str
|
|
except ValueError:
|
|
raise ValueError(f"Unable to convert {encoded_key} to an AgentBufferKey")
|
|
|
|
def __getitem__(self, key: AgentBufferKey) -> AgentBufferField:
|
|
if self.CHECK_KEY_TYPES_AT_RUNTIME:
|
|
self._check_key(key)
|
|
return self._fields[key]
|
|
|
|
def __setitem__(self, key: AgentBufferKey, value: AgentBufferField) -> None:
|
|
if self.CHECK_KEY_TYPES_AT_RUNTIME:
|
|
self._check_key(key)
|
|
self._fields[key] = value
|
|
|
|
def __delitem__(self, key: AgentBufferKey) -> None:
|
|
if self.CHECK_KEY_TYPES_AT_RUNTIME:
|
|
self._check_key(key)
|
|
self._fields.__delitem__(key)
|
|
|
|
def __iter__(self):
|
|
return self._fields.__iter__()
|
|
|
|
def __len__(self) -> int:
|
|
return self._fields.__len__()
|
|
|
|
def __contains__(self, key):
|
|
if self.CHECK_KEY_TYPES_AT_RUNTIME:
|
|
self._check_key(key)
|
|
return self._fields.__contains__(key)
|
|
|
|
def check_length(self, key_list: List[AgentBufferKey]) -> bool:
|
|
"""
|
|
Some methods will require that some fields have the same length.
|
|
check_length will return true if the fields in key_list
|
|
have the same length.
|
|
:param key_list: The fields which length will be compared
|
|
"""
|
|
if self.CHECK_KEY_TYPES_AT_RUNTIME:
|
|
for k in key_list:
|
|
self._check_key(k)
|
|
|
|
if len(key_list) < 2:
|
|
return True
|
|
length = None
|
|
for key in key_list:
|
|
if key not in self._fields:
|
|
return False
|
|
if (length is not None) and (length != len(self[key])):
|
|
return False
|
|
length = len(self[key])
|
|
return True
|
|
|
|
def shuffle(
|
|
self, sequence_length: int, key_list: List[AgentBufferKey] = None
|
|
) -> None:
|
|
"""
|
|
Shuffles the fields in key_list in a consistent way: The reordering will
|
|
be the same across fields.
|
|
:param key_list: The fields that must be shuffled.
|
|
"""
|
|
if key_list is None:
|
|
key_list = list(self._fields.keys())
|
|
if not self.check_length(key_list):
|
|
raise BufferException(
|
|
"Unable to shuffle if the fields are not of same length"
|
|
)
|
|
s = np.arange(len(self[key_list[0]]) // sequence_length)
|
|
np.random.shuffle(s)
|
|
for key in key_list:
|
|
tmp: List[np.ndarray] = []
|
|
for i in s:
|
|
tmp += self[key][i * sequence_length : (i + 1) * sequence_length]
|
|
self[key][:] = tmp
|
|
|
|
def make_mini_batch(self, start: int, end: int) -> "AgentBuffer":
|
|
"""
|
|
Creates a mini-batch from buffer.
|
|
:param start: Starting index of buffer.
|
|
:param end: Ending index of buffer.
|
|
:return: Dict of mini batch.
|
|
"""
|
|
mini_batch = AgentBuffer()
|
|
for key, field in self._fields.items():
|
|
# slicing AgentBufferField returns a List[Any}
|
|
mini_batch[key] = field[start:end] # type: ignore
|
|
return mini_batch
|
|
|
|
def sample_mini_batch(
|
|
self, batch_size: int, sequence_length: int = 1
|
|
) -> "AgentBuffer":
|
|
"""
|
|
Creates a mini-batch from a random start and end.
|
|
:param batch_size: number of elements to withdraw.
|
|
:param sequence_length: Length of sequences to sample.
|
|
Number of sequences to sample will be batch_size/sequence_length.
|
|
"""
|
|
num_seq_to_sample = batch_size // sequence_length
|
|
mini_batch = AgentBuffer()
|
|
buff_len = self.num_experiences
|
|
num_sequences_in_buffer = buff_len // sequence_length
|
|
start_idxes = (
|
|
np.random.randint(num_sequences_in_buffer, size=num_seq_to_sample)
|
|
* sequence_length
|
|
) # Sample random sequence starts
|
|
for key in self:
|
|
mb_list = [self[key][i : i + sequence_length] for i in start_idxes]
|
|
# See comparison of ways to make a list from a list of lists here:
|
|
# https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists
|
|
mini_batch[key].set(list(itertools.chain.from_iterable(mb_list)))
|
|
return mini_batch
|
|
|
|
def save_to_file(self, file_object: BinaryIO) -> None:
|
|
"""
|
|
Saves the AgentBuffer to a file-like object.
|
|
"""
|
|
with h5py.File(file_object, "w") as write_file:
|
|
for key, data in self.items():
|
|
write_file.create_dataset(
|
|
self._encode_key(key), data=data, dtype="f", compression="gzip"
|
|
)
|
|
|
|
def load_from_file(self, file_object: BinaryIO) -> None:
|
|
"""
|
|
Loads the AgentBuffer from a file-like object.
|
|
"""
|
|
with h5py.File(file_object, "r") as read_file:
|
|
for key in list(read_file.keys()):
|
|
decoded_key = self._decode_key(key)
|
|
self[decoded_key] = AgentBufferField()
|
|
# extend() will convert the numpy array's first dimension into list
|
|
self[decoded_key].extend(read_file[key][()])
|
|
|
|
def truncate(self, max_length: int, sequence_length: int = 1) -> None:
|
|
"""
|
|
Truncates the buffer to a certain length.
|
|
|
|
This can be slow for large buffers. We compensate by cutting further than we need to, so that
|
|
we're not truncating at each update. Note that we must truncate an integer number of sequence_lengths
|
|
param: max_length: The length at which to truncate the buffer.
|
|
"""
|
|
current_length = self.num_experiences
|
|
# make max_length an integer number of sequence_lengths
|
|
max_length -= max_length % sequence_length
|
|
if current_length > max_length:
|
|
for _key in self.keys():
|
|
self[_key][:] = self[_key][current_length - max_length :]
|
|
|
|
def resequence_and_append(
|
|
self,
|
|
target_buffer: "AgentBuffer",
|
|
key_list: List[AgentBufferKey] = None,
|
|
batch_size: int = None,
|
|
training_length: int = None,
|
|
) -> None:
|
|
"""
|
|
Takes in a batch size and training length (sequence length), and appends this AgentBuffer to target_buffer
|
|
properly padded for LSTM use. Optionally, use key_list to restrict which fields are inserted into the new
|
|
buffer.
|
|
:param target_buffer: The buffer which to append the samples to.
|
|
:param key_list: The fields that must be added. If None: all fields will be appended.
|
|
:param batch_size: The number of elements that must be appended. If None: All of them will be.
|
|
:param training_length: The length of the samples that must be appended. If None: only takes one element.
|
|
"""
|
|
if key_list is None:
|
|
key_list = list(self.keys())
|
|
if not self.check_length(key_list):
|
|
raise BufferException(
|
|
f"The length of the fields {key_list} were not of same length"
|
|
)
|
|
for field_key in key_list:
|
|
target_buffer[field_key].extend(
|
|
self[field_key].get_batch(
|
|
batch_size=batch_size, training_length=training_length
|
|
)
|
|
)
|
|
|
|
@property
|
|
def num_experiences(self) -> int:
|
|
"""
|
|
The number of agent experiences in the AgentBuffer, i.e. the length of the buffer.
|
|
|
|
An experience consists of one element across all of the fields of this AgentBuffer.
|
|
Note that these all have to be the same length, otherwise shuffle and append_to_update_buffer
|
|
will fail.
|
|
"""
|
|
if self.values():
|
|
return len(next(iter(self.values())))
|
|
else:
|
|
return 0
|