Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

166 行
7.6 KiB

using System.Collections.Generic;
using Unity.Barracuda;
using Unity.MLAgents.Sensors;
namespace Unity.MLAgents.Inference
{
/// <summary>
/// Mapping between Tensor names and generators.
/// A TensorGenerator implements a Dictionary of strings (node names) to an Action.
/// The Action take as argument the tensor, the current batch size and a Dictionary of
/// Agent to AgentInfo corresponding to the current batch.
/// Each Generator reshapes and fills the data of the tensor based of the data of the batch.
/// When the TensorProxy is an Input to the model, the shape of the Tensor will be modified
/// depending on the current batch size and the data of the Tensor will be filled using the
/// Dictionary of Agent to AgentInfo.
/// When the TensorProxy is an Output of the model, only the shape of the Tensor will be
/// modified using the current batch size. The data will be pre-filled with zeros.
/// </summary>
internal class TensorGenerator
{
public interface IGenerator
{
/// <summary>
/// Modifies the data inside a Tensor according to the information contained in the
/// AgentInfos contained in the current batch.
/// </summary>
/// <param name="tensorProxy"> The tensor the data and shape will be modified.</param>
/// <param name="batchSize"> The number of agents present in the current batch.</param>
/// <param name="infos">
/// List of AgentInfos containing the information that will be used to populate
/// the tensor's data.
/// </param>
void Generate(
TensorProxy tensorProxy, int batchSize, IList<AgentInfoSensorsPair> infos);
}
readonly Dictionary<string, IGenerator> m_Dict = new Dictionary<string, IGenerator>();
/// <summary>
/// Returns a new TensorGenerators object.
/// </summary>
/// <param name="seed"> The seed the Generators will be initialized with.</param>
/// <param name="allocator"> Tensor allocator.</param>
/// <param name="memories">Dictionary of AgentInfo.id to memory for use in the inference model.</param>
/// <param name="barracudaModel"></param>
public TensorGenerator(
int seed,
ITensorAllocator allocator,
Dictionary<int, List<float>> memories,
object barracudaModel = null)
{
// If model is null, no inference to run and exception is thrown before reaching here.
if (barracudaModel == null)
{
return;
}
var model = (Model)barracudaModel;
// Generator for Inputs
m_Dict[TensorNames.BatchSizePlaceholder] =
new BatchSizeGenerator(allocator);
m_Dict[TensorNames.SequenceLengthPlaceholder] =
new SequenceLengthGenerator(allocator);
m_Dict[TensorNames.RecurrentInPlaceholder] =
new RecurrentInputGenerator(allocator, memories);
for (var i = 0; i < model.memories.Count; i++)
{
m_Dict[model.memories[i].input] =
new BarracudaRecurrentInputGenerator(i, allocator, memories);
}
m_Dict[TensorNames.PreviousActionPlaceholder] =
new PreviousActionInputGenerator(allocator);
m_Dict[TensorNames.ActionMaskPlaceholder] =
new ActionMaskInputGenerator(allocator);
m_Dict[TensorNames.RandomNormalEpsilonPlaceholder] =
new RandomNormalInputGenerator(seed, allocator);
// Generators for Outputs
if (model.HasContinuousOutputs())
{
m_Dict[model.ContinuousOutputName()] = new BiDimensionalOutputGenerator(allocator);
}
if (model.HasDiscreteOutputs())
{
m_Dict[model.DiscreteOutputName()] = new BiDimensionalOutputGenerator(allocator);
}
m_Dict[TensorNames.RecurrentOutput] = new BiDimensionalOutputGenerator(allocator);
m_Dict[TensorNames.ValueEstimateOutput] = new BiDimensionalOutputGenerator(allocator);
}
public void InitializeObservations(List<ISensor> sensors, ITensorAllocator allocator)
{
// Loop through the sensors on a representative agent.
// All vector observations use a shared ObservationGenerator since they are concatenated.
// All other observations use a unique ObservationInputGenerator
var visIndex = 0;
ObservationGenerator vecObsGen = null;
for (var sensorIndex = 0; sensorIndex < sensors.Count; sensorIndex++)
{
var sensor = sensors[sensorIndex];
var shape = sensor.GetObservationSpec().Shape;
var rank = shape.Length;
ObservationGenerator obsGen = null;
string obsGenName = null;
switch (rank)
{
case 1:
if (vecObsGen == null)
{
vecObsGen = new ObservationGenerator(allocator);
}
obsGen = vecObsGen;
obsGenName = TensorNames.VectorObservationPlaceholder;
break;
case 2:
// If the tensor is of rank 2, we use the index of the sensor
// to create the name
obsGen = new ObservationGenerator(allocator);
obsGenName = TensorNames.GetObservationName(sensorIndex);
break;
case 3:
// If the tensor is of rank 3, we use the "visual observation
// index", which only counts the rank 3 sensors
obsGen = new ObservationGenerator(allocator);
obsGenName = TensorNames.GetVisualObservationName(visIndex);
visIndex++;
break;
default:
throw new UnityAgentsException(
$"Sensor {sensor.GetName()} have an invalid rank {rank}");
}
obsGen.AddSensorIndex(sensorIndex);
m_Dict[obsGenName] = obsGen;
}
}
/// <summary>
/// Populates the data of the tensor inputs given the data contained in the current batch
/// of agents.
/// </summary>
/// <param name="tensors"> Enumerable of tensors that will be modified.</param>
/// <param name="currentBatchSize"> The number of agents present in the current batch
/// </param>
/// <param name="infos"> List of AgentsInfos and Sensors that contains the
/// data that will be used to modify the tensors</param>
/// <exception cref="UnityAgentsException"> One of the tensor does not have an
/// associated generator.</exception>
public void GenerateTensors(
IReadOnlyList<TensorProxy> tensors, int currentBatchSize, IList<AgentInfoSensorsPair> infos)
{
for (var tensorIndex = 0; tensorIndex < tensors.Count; tensorIndex++)
{
var tensor = tensors[tensorIndex];
if (!m_Dict.ContainsKey(tensor.name))
{
throw new UnityAgentsException(
$"Unknown tensorProxy expected as input : {tensor.name}");
}
m_Dict[tensor.name].Generate(tensor, currentBatchSize, infos);
}
}
}
}