9.5 KiB
Training with Proximal Policy Optimization
ML-Agents uses a reinforcement learning technique called Proximal Policy Optimization (PPO). PPO uses a neural network to approximate the ideal function that maps an agent's observations to the best action an agent can take in a given state. The ML-Agents PPO algorithm is implemented in TensorFlow and runs in a separate Python process (communicating with the running Unity application over a socket).
See Training ML-Agents for instructions on running the
training program, learn.py
.
If you are using the recurrent neural network (RNN) to utilize memory, see Using Recurrent Neural Networks for RNN-specific training details.
If you are using curriculum training to pace the difficulty of the learning task presented to an agent, see Training with Curriculum Learning.
For information about imitation learning, which uses a different training algorithm, see Training with Imitation Learning.
Best Practices when training with PPO
Successfully training a Reinforcement Learning model often involves tuning the training hyperparameters. This guide contains some best practices for tuning the training process when the default parameters don't seem to be giving the level of performance you would like.
Hyperparameters
Gamma
gamma
corresponds to the discount factor for future rewards. This can be
thought of as how far into the future the agent should care about possible
rewards. In situations when the agent should be acting in the present in order
to prepare for rewards in the distant future, this value should be large. In
cases when rewards are more immediate, it can be smaller.
Typical Range: 0.8
- 0.995
Lambda
lambd
corresponds to the lambda
parameter used when calculating the
Generalized Advantage Estimate (GAE). This
can be thought of as how much the agent relies on its current value estimate
when calculating an updated value estimate. Low values correspond to relying
more on the current value estimate (which can be high bias), and high values
correspond to relying more on the actual rewards received in the environment
(which can be high variance). The parameter provides a trade-off between the
two, and the right value can lead to a more stable training process.
Typical Range: 0.9
- 0.95
Buffer Size
buffer_size
corresponds to how many experiences (agent observations, actions
and rewards obtained) should be collected before we do any learning or updating
of the model. This should be a multiple of batch_size
. Typically a larger
buffer_size
corresponds to more stable training updates.
Typical Range: 2048
- 409600
Batch Size
batch_size
is the number of experiences used for one iteration of a gradient
descent update. This should always be a fraction of the buffer_size
. If
you are using a continuous action space, this value should be large (in the
order of 1000s). If you are using a discrete action space, this value should be
smaller (in order of 10s).
Typical Range (Continuous): 512
- 5120
Typical Range (Discrete): 32
- 512
Number of Epochs
num_epoch
is the number of passes through the experience buffer during
gradient descent. The larger the batch_size
, the larger it is acceptable to
make this. Decreasing this will ensure more stable updates, at the cost of
slower learning.
Typical Range: 3
- 10
Learning Rate
learning_rate
corresponds to the strength of each gradient descent update
step. This should typically be decreased if training is unstable, and the reward
does not consistently increase.
Typical Range: 1e-5
- 1e-3
Time Horizon
time_horizon
corresponds to how many steps of experience to collect per-agent
before adding it to the experience buffer. When this limit is reached before the
end of an episode, a value estimate is used to predict the overall expected
reward from the agent's current state. As such, this parameter trades off
between a less biased, but higher variance estimate (long time horizon) and more
biased, but less varied estimate (short time horizon). In cases where there are
frequent rewards within an episode, or episodes are prohibitively large, a
smaller number can be more ideal. This number should be large enough to capture
all the important behavior within a sequence of an agent's actions.
Typical Range: 32
- 2048
Max Steps
max_steps
corresponds to how many steps of the simulation (multiplied by
frame-skip) are run during the training process. This value should be increased
for more complex problems.
Typical Range: 5e5
- 1e7
Beta
beta
corresponds to the strength of the entropy regularization, which makes
the policy "more random." This ensures that agents properly explore the action
space during training. Increasing this will ensure more random actions are
taken. This should be adjusted such that the entropy (measurable from
TensorBoard) slowly decreases alongside increases in reward. If entropy drops
too quickly, increase beta
. If entropy drops too slowly, decrease beta
.
Typical Range: 1e-4
- 1e-2
Epsilon
epsilon
corresponds to the acceptable threshold of divergence between the old
and new policies during gradient descent updating. Setting this value small will
result in more stable updates, but will also slow the training process.
Typical Range: 0.1
- 0.3
Normalize
normalize
corresponds to whether normalization is applied to the vector
observation inputs. This normalization is based on the running average and
variance of the vector observation. Normalization can be helpful in cases with
complex continuous control problems, but may be harmful with simpler discrete
control problems.
Number of Layers
num_layers
corresponds to how many hidden layers are present after the
observation input, or after the CNN encoding of the visual observation. For
simple problems, fewer layers are likely to train faster and more efficiently.
More layers may be necessary for more complex control problems.
Typical range: 1
- 3
Hidden Units
hidden_units
correspond to how many units are in each fully connected layer of
the neural network. For simple problems where the correct action is a
straightforward combination of the observation inputs, this should be small. For
problems where the action is a very complex interaction between the observation
variables, this should be larger.
Typical Range: 32
- 512
(Optional) Recurrent Neural Network Hyperparameters
The below hyperparameters are only used when use_recurrent
is set to true.
Sequence Length
sequence_length
corresponds to the length of the sequences of experience
passed through the network during training. This should be long enough to
capture whatever information your agent might need to remember over time. For
example, if your agent needs to remember the velocity of objects, then this can
be a small value. If your agent needs to remember a piece of information given
only once at the beginning of an episode, then this should be a larger value.
Typical Range: 4
- 128
Memory Size
memory_size
corresponds to the size of the array of floating point numbers
used to store the hidden state of the recurrent neural network. This value must
be a multiple of 4, and should scale with the amount of information you expect
the agent will need to remember in order to successfully complete the task.
Typical Range: 64
- 512
(Optional) Intrinsic Curiosity Module Hyperparameters
The below hyperparameters are only used when use_curiosity
is set to true.
Curioisty Encoding Size
curiosity_enc_size
corresponds to the size of the hidden layer used to encode
the observations within the intrinsic curiosity module. This value should be
small enough to encourage the curiosity module to compress the original
observation, but also not too small to prevent it from learning the dynamics of
the environment.
Typical Range: 64
- 256
Curiosity Strength
curiosity_strength
corresponds to the magnitude of the intrinsic reward
generated by the intrinsic curiosity module. This should be scaled in order to
ensure it is large enough to not be overwhelmed by extrnisic reward signals in
the environment. Likewise it should not be too large to overwhelm the extrinsic
reward signal.
Typical Range: 0.1
- 0.001
Training Statistics
To view training statistics, use TensorBoard. For information on launching and using TensorBoard, see here.
Cumulative Reward
The general trend in reward should consistently increase over time. Small ups and downs are to be expected. Depending on the complexity of the task, a significant increase in reward may not present itself until millions of steps into the training process.
Entropy
This corresponds to how random the decisions of a brain are. This should
consistently decrease during training. If it decreases too soon or not at all,
beta
should be adjusted (when using discrete action space).
Learning Rate
This will decrease over time on a linear schedule.
Policy Loss
These values will oscillate during training. Generally they should be less than 1.0.
Value Estimate
These values should increase as the cumulative reward increases. They correspond to how much future reward the agent predicts itself receiving at any given point.
Value Loss
These values will increase as the reward increases, and then should decrease once reward becomes stable.