您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
312 行
12 KiB
312 行
12 KiB
from typing import List, Optional, Tuple
|
|
|
|
from mlagents.tf_utils import tf
|
|
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.models import ModelUtils
|
|
|
|
EPSILON = 1e-7
|
|
|
|
|
|
class GAILModel:
|
|
def __init__(
|
|
self,
|
|
policy: TFPolicy,
|
|
h_size: int = 128,
|
|
learning_rate: float = 3e-4,
|
|
encoding_size: int = 64,
|
|
use_actions: bool = False,
|
|
use_vail: bool = False,
|
|
gradient_penalty_weight: float = 10.0,
|
|
):
|
|
"""
|
|
The initializer for the GAIL reward generator.
|
|
https://arxiv.org/abs/1606.03476
|
|
:param policy_model: The policy of the learning algorithm
|
|
:param h_size: Size of the hidden layer for the discriminator
|
|
:param learning_rate: The learning Rate for the discriminator
|
|
:param encoding_size: The encoding size for the encoder
|
|
:param use_actions: Whether or not to use actions to discriminate
|
|
:param use_vail: Whether or not to use a variational bottleneck for the
|
|
discriminator. See https://arxiv.org/abs/1810.00821.
|
|
"""
|
|
self.h_size = h_size
|
|
self.z_size = 128
|
|
self.alpha = 0.0005
|
|
self.mutual_information = 0.5
|
|
self.policy = policy
|
|
self.encoding_size = encoding_size
|
|
self.gradient_penalty_weight = gradient_penalty_weight
|
|
self.use_vail = use_vail
|
|
self.use_actions = use_actions # True # Not using actions
|
|
|
|
self.noise: Optional[tf.Tensor] = None
|
|
self.z: Optional[tf.Tensor] = None
|
|
|
|
self.make_inputs()
|
|
self.create_network()
|
|
self.create_loss(learning_rate)
|
|
if self.use_vail:
|
|
self.make_beta_update()
|
|
|
|
def make_beta_update(self) -> None:
|
|
"""
|
|
Creates the beta parameter and its updater for GAIL
|
|
"""
|
|
|
|
new_beta = tf.maximum(
|
|
self.beta + self.alpha * (self.kl_loss - self.mutual_information), EPSILON
|
|
)
|
|
with tf.control_dependencies([self.update_batch]):
|
|
self.update_beta = tf.assign(self.beta, new_beta)
|
|
|
|
def make_inputs(self) -> None:
|
|
"""
|
|
Creates the input layers for the discriminator
|
|
"""
|
|
self.done_expert_holder = tf.placeholder(shape=[None], dtype=tf.float32)
|
|
self.done_policy_holder = tf.placeholder(shape=[None], dtype=tf.float32)
|
|
self.done_expert = tf.expand_dims(self.done_expert_holder, -1)
|
|
self.done_policy = tf.expand_dims(self.done_policy_holder, -1)
|
|
|
|
if self.policy.brain.vector_action_space_type == "continuous":
|
|
action_length = self.policy.act_size[0]
|
|
self.action_in_expert = tf.placeholder(
|
|
shape=[None, action_length], dtype=tf.float32
|
|
)
|
|
self.expert_action = tf.identity(self.action_in_expert)
|
|
else:
|
|
action_length = len(self.policy.act_size)
|
|
self.action_in_expert = tf.placeholder(
|
|
shape=[None, action_length], dtype=tf.int32
|
|
)
|
|
self.expert_action = tf.concat(
|
|
[
|
|
tf.one_hot(self.action_in_expert[:, i], act_size)
|
|
for i, act_size in enumerate(self.policy.act_size)
|
|
],
|
|
axis=1,
|
|
)
|
|
|
|
encoded_policy_list = []
|
|
encoded_expert_list = []
|
|
|
|
if self.policy.vec_obs_size > 0:
|
|
self.obs_in_expert = tf.placeholder(
|
|
shape=[None, self.policy.vec_obs_size], dtype=tf.float32
|
|
)
|
|
if self.policy.normalize:
|
|
encoded_expert_list.append(
|
|
ModelUtils.normalize_vector_obs(
|
|
self.obs_in_expert,
|
|
self.policy.running_mean,
|
|
self.policy.running_variance,
|
|
self.policy.normalization_steps,
|
|
)
|
|
)
|
|
encoded_policy_list.append(self.policy.processed_vector_in)
|
|
else:
|
|
encoded_expert_list.append(self.obs_in_expert)
|
|
encoded_policy_list.append(self.policy.vector_in)
|
|
|
|
if self.policy.vis_obs_size > 0:
|
|
self.expert_visual_in: List[tf.Tensor] = []
|
|
visual_policy_encoders = []
|
|
visual_expert_encoders = []
|
|
for i in range(self.policy.vis_obs_size):
|
|
# Create input ops for next (t+1) visual observations.
|
|
visual_input = ModelUtils.create_visual_input(
|
|
self.policy.brain.camera_resolutions[i],
|
|
name="gail_visual_observation_" + str(i),
|
|
)
|
|
self.expert_visual_in.append(visual_input)
|
|
|
|
encoded_policy_visual = ModelUtils.create_visual_observation_encoder(
|
|
self.policy.visual_in[i],
|
|
self.encoding_size,
|
|
ModelUtils.swish,
|
|
1,
|
|
f"gail_stream_{i}_visual_obs_encoder",
|
|
False,
|
|
)
|
|
|
|
encoded_expert_visual = ModelUtils.create_visual_observation_encoder(
|
|
self.expert_visual_in[i],
|
|
self.encoding_size,
|
|
ModelUtils.swish,
|
|
1,
|
|
f"gail_stream_{i}_visual_obs_encoder",
|
|
True,
|
|
)
|
|
visual_policy_encoders.append(encoded_policy_visual)
|
|
visual_expert_encoders.append(encoded_expert_visual)
|
|
hidden_policy_visual = tf.concat(visual_policy_encoders, axis=1)
|
|
hidden_expert_visual = tf.concat(visual_expert_encoders, axis=1)
|
|
encoded_policy_list.append(hidden_policy_visual)
|
|
encoded_expert_list.append(hidden_expert_visual)
|
|
|
|
self.encoded_expert = tf.concat(encoded_expert_list, axis=1)
|
|
self.encoded_policy = tf.concat(encoded_policy_list, axis=1)
|
|
|
|
def create_encoder(
|
|
self, state_in: tf.Tensor, action_in: tf.Tensor, done_in: tf.Tensor, reuse: bool
|
|
) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
|
|
"""
|
|
Creates the encoder for the discriminator
|
|
:param state_in: The encoded observation input
|
|
:param action_in: The action input
|
|
:param done_in: The done flags input
|
|
:param reuse: If true, the weights will be shared with the previous encoder created
|
|
"""
|
|
with tf.variable_scope("GAIL_model"):
|
|
if self.use_actions:
|
|
concat_input = tf.concat([state_in, action_in, done_in], axis=1)
|
|
else:
|
|
concat_input = state_in
|
|
|
|
hidden_1 = tf.layers.dense(
|
|
concat_input,
|
|
self.h_size,
|
|
activation=ModelUtils.swish,
|
|
name="gail_d_hidden_1",
|
|
reuse=reuse,
|
|
)
|
|
|
|
hidden_2 = tf.layers.dense(
|
|
hidden_1,
|
|
self.h_size,
|
|
activation=ModelUtils.swish,
|
|
name="gail_d_hidden_2",
|
|
reuse=reuse,
|
|
)
|
|
|
|
z_mean = None
|
|
if self.use_vail:
|
|
# Latent representation
|
|
z_mean = tf.layers.dense(
|
|
hidden_2,
|
|
self.z_size,
|
|
reuse=reuse,
|
|
name="gail_z_mean",
|
|
kernel_initializer=ModelUtils.scaled_init(0.01),
|
|
)
|
|
|
|
self.noise = tf.random_normal(tf.shape(z_mean), dtype=tf.float32)
|
|
|
|
# Sampled latent code
|
|
self.z = z_mean + self.z_sigma * self.noise * self.use_noise
|
|
estimate_input = self.z
|
|
else:
|
|
estimate_input = hidden_2
|
|
|
|
estimate = tf.layers.dense(
|
|
estimate_input,
|
|
1,
|
|
activation=tf.nn.sigmoid,
|
|
name="gail_d_estimate",
|
|
reuse=reuse,
|
|
)
|
|
return estimate, z_mean, concat_input
|
|
|
|
def create_network(self) -> None:
|
|
"""
|
|
Helper for creating the intrinsic reward nodes
|
|
"""
|
|
if self.use_vail:
|
|
self.z_sigma = tf.get_variable(
|
|
"gail_sigma_vail",
|
|
self.z_size,
|
|
dtype=tf.float32,
|
|
initializer=tf.ones_initializer(),
|
|
)
|
|
self.z_sigma_sq = self.z_sigma * self.z_sigma
|
|
self.z_log_sigma_sq = tf.log(self.z_sigma_sq + EPSILON)
|
|
self.use_noise = tf.placeholder(
|
|
shape=[1], dtype=tf.float32, name="gail_NoiseLevel"
|
|
)
|
|
self.expert_estimate, self.z_mean_expert, _ = self.create_encoder(
|
|
self.encoded_expert, self.expert_action, self.done_expert, reuse=False
|
|
)
|
|
self.policy_estimate, self.z_mean_policy, _ = self.create_encoder(
|
|
self.encoded_policy,
|
|
self.policy.selected_actions,
|
|
self.done_policy,
|
|
reuse=True,
|
|
)
|
|
self.mean_policy_estimate = tf.reduce_mean(self.policy_estimate)
|
|
self.mean_expert_estimate = tf.reduce_mean(self.expert_estimate)
|
|
self.discriminator_score = tf.reshape(
|
|
self.policy_estimate, [-1], name="gail_reward"
|
|
)
|
|
self.intrinsic_reward = -tf.log(1.0 - self.discriminator_score + EPSILON)
|
|
|
|
def create_gradient_magnitude(self) -> tf.Tensor:
|
|
"""
|
|
Gradient penalty from https://arxiv.org/pdf/1704.00028. Adds stability esp.
|
|
for off-policy. Compute gradients w.r.t randomly interpolated input.
|
|
"""
|
|
expert = [self.encoded_expert, self.expert_action, self.done_expert]
|
|
policy = [self.encoded_policy, self.policy.selected_actions, self.done_policy]
|
|
interp = []
|
|
for _expert_in, _policy_in in zip(expert, policy):
|
|
alpha = tf.random_uniform(tf.shape(_expert_in))
|
|
interp.append(alpha * _expert_in + (1 - alpha) * _policy_in)
|
|
|
|
grad_estimate, _, grad_input = self.create_encoder(
|
|
interp[0], interp[1], interp[2], reuse=True
|
|
)
|
|
|
|
grad = tf.gradients(grad_estimate, [grad_input])[0]
|
|
|
|
# Norm's gradient could be NaN at 0. Use our own safe_norm
|
|
safe_norm = tf.sqrt(tf.reduce_sum(grad ** 2, axis=-1) + EPSILON)
|
|
gradient_mag = tf.reduce_mean(tf.pow(safe_norm - 1, 2))
|
|
|
|
return gradient_mag
|
|
|
|
def create_loss(self, learning_rate: float) -> None:
|
|
"""
|
|
Creates the loss and update nodes for the GAIL reward generator
|
|
:param learning_rate: The learning rate for the optimizer
|
|
"""
|
|
self.mean_expert_estimate = tf.reduce_mean(self.expert_estimate)
|
|
self.mean_policy_estimate = tf.reduce_mean(self.policy_estimate)
|
|
|
|
if self.use_vail:
|
|
self.beta = tf.get_variable(
|
|
"gail_beta",
|
|
[],
|
|
trainable=False,
|
|
dtype=tf.float32,
|
|
initializer=tf.ones_initializer(),
|
|
)
|
|
|
|
self.discriminator_loss = -tf.reduce_mean(
|
|
tf.log(self.expert_estimate + EPSILON)
|
|
+ tf.log(1.0 - self.policy_estimate + EPSILON)
|
|
)
|
|
|
|
if self.use_vail:
|
|
# KL divergence loss (encourage latent representation to be normal)
|
|
self.kl_loss = tf.reduce_mean(
|
|
-tf.reduce_sum(
|
|
1
|
|
+ self.z_log_sigma_sq
|
|
- 0.5 * tf.square(self.z_mean_expert)
|
|
- 0.5 * tf.square(self.z_mean_policy)
|
|
- tf.exp(self.z_log_sigma_sq),
|
|
1,
|
|
)
|
|
)
|
|
self.loss = (
|
|
self.beta * (self.kl_loss - self.mutual_information)
|
|
+ self.discriminator_loss
|
|
)
|
|
else:
|
|
self.loss = self.discriminator_loss
|
|
|
|
if self.gradient_penalty_weight > 0.0:
|
|
self.loss += self.gradient_penalty_weight * self.create_gradient_magnitude()
|
|
|
|
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
|
|
self.update_batch = optimizer.minimize(self.loss)
|