您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
382 行
14 KiB
382 行
14 KiB
import logging
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
from mlagents.trainers.models import LearningModel, EncoderType, LearningRateSchedule
|
|
|
|
logger = logging.getLogger("mlagents.trainers")
|
|
|
|
|
|
class PPOModel(LearningModel):
|
|
def __init__(
|
|
self,
|
|
brain,
|
|
lr=1e-4,
|
|
lr_schedule=LearningRateSchedule.LINEAR,
|
|
h_size=128,
|
|
epsilon=0.2,
|
|
beta=1e-3,
|
|
max_step=5e6,
|
|
normalize=False,
|
|
use_recurrent=False,
|
|
num_layers=2,
|
|
m_size=None,
|
|
seed=0,
|
|
stream_names=None,
|
|
vis_encode_type=EncoderType.SIMPLE,
|
|
):
|
|
"""
|
|
Takes a Unity environment and model-specific hyper-parameters and returns the
|
|
appropriate PPO agent model for the environment.
|
|
:param brain: brain parameters used to generate specific network graph.
|
|
:param lr: Learning rate.
|
|
:param lr_schedule: Learning rate decay schedule.
|
|
:param h_size: Size of hidden layers
|
|
:param epsilon: Value for policy-divergence threshold.
|
|
:param beta: Strength of entropy regularization.
|
|
:param max_step: Total number of training steps.
|
|
:param normalize: Whether to normalize vector observation input.
|
|
:param use_recurrent: Whether to use an LSTM layer in the network.
|
|
:param num_layers Number of hidden layers between encoded input and policy & value layers
|
|
:param m_size: Size of brain memory.
|
|
:param seed: Seed to use for initialization of model.
|
|
:param stream_names: List of names of value streams. Usually, a list of the Reward Signals being used.
|
|
:return: a sub-class of PPOAgent tailored to the environment.
|
|
"""
|
|
LearningModel.__init__(
|
|
self, m_size, normalize, use_recurrent, brain, seed, stream_names
|
|
)
|
|
|
|
self.optimizer: Optional[tf.train.AdamOptimizer] = None
|
|
self.grads = None
|
|
self.update_batch: Optional[tf.Operation] = None
|
|
|
|
if num_layers < 1:
|
|
num_layers = 1
|
|
if brain.vector_action_space_type == "continuous":
|
|
self.create_cc_actor_critic(h_size, num_layers, vis_encode_type)
|
|
self.entropy = tf.ones_like(tf.reshape(self.value, [-1])) * self.entropy
|
|
else:
|
|
self.create_dc_actor_critic(h_size, num_layers, vis_encode_type)
|
|
self.learning_rate = self.create_learning_rate(
|
|
lr_schedule, lr, self.global_step, max_step
|
|
)
|
|
self.create_losses(
|
|
self.log_probs,
|
|
self.old_log_probs,
|
|
self.value_heads,
|
|
self.entropy,
|
|
beta,
|
|
epsilon,
|
|
lr,
|
|
max_step,
|
|
)
|
|
|
|
def create_cc_actor_critic(
|
|
self, h_size: int, num_layers: int, vis_encode_type: EncoderType
|
|
) -> None:
|
|
"""
|
|
Creates Continuous control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
"""
|
|
hidden_streams = self.create_observation_streams(
|
|
2, h_size, num_layers, vis_encode_type
|
|
)
|
|
|
|
if self.use_recurrent:
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
|
|
)
|
|
_half_point = int(self.m_size / 2)
|
|
hidden_policy, memory_policy_out = self.create_recurrent_encoder(
|
|
hidden_streams[0],
|
|
self.memory_in[:, :_half_point],
|
|
self.sequence_length,
|
|
name="lstm_policy",
|
|
)
|
|
|
|
hidden_value, memory_value_out = self.create_recurrent_encoder(
|
|
hidden_streams[1],
|
|
self.memory_in[:, _half_point:],
|
|
self.sequence_length,
|
|
name="lstm_value",
|
|
)
|
|
self.memory_out = tf.concat(
|
|
[memory_policy_out, memory_value_out], axis=1, name="recurrent_out"
|
|
)
|
|
else:
|
|
hidden_policy = hidden_streams[0]
|
|
hidden_value = hidden_streams[1]
|
|
|
|
mu = tf.layers.dense(
|
|
hidden_policy,
|
|
self.act_size[0],
|
|
activation=None,
|
|
kernel_initializer=LearningModel.scaled_init(0.01),
|
|
reuse=tf.AUTO_REUSE,
|
|
)
|
|
|
|
self.log_sigma_sq = tf.get_variable(
|
|
"log_sigma_squared",
|
|
[self.act_size[0]],
|
|
dtype=tf.float32,
|
|
initializer=tf.zeros_initializer(),
|
|
)
|
|
|
|
sigma_sq = tf.exp(self.log_sigma_sq)
|
|
|
|
self.epsilon = tf.placeholder(
|
|
shape=[None, self.act_size[0]], dtype=tf.float32, name="epsilon"
|
|
)
|
|
# Clip and scale output to ensure actions are always within [-1, 1] range.
|
|
self.output_pre = mu + tf.sqrt(sigma_sq) * self.epsilon
|
|
output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3
|
|
self.output = tf.identity(output_post, name="action")
|
|
self.selected_actions = tf.stop_gradient(output_post)
|
|
|
|
# Compute probability of model output.
|
|
all_probs = (
|
|
-0.5 * tf.square(tf.stop_gradient(self.output_pre) - mu) / sigma_sq
|
|
- 0.5 * tf.log(2.0 * np.pi)
|
|
- 0.5 * self.log_sigma_sq
|
|
)
|
|
|
|
self.all_log_probs = tf.identity(all_probs, name="action_probs")
|
|
|
|
self.entropy = 0.5 * tf.reduce_mean(
|
|
tf.log(2 * np.pi * np.e) + self.log_sigma_sq
|
|
)
|
|
|
|
self.create_value_heads(self.stream_names, hidden_value)
|
|
|
|
self.all_old_log_probs = tf.placeholder(
|
|
shape=[None, self.act_size[0]], dtype=tf.float32, name="old_probabilities"
|
|
)
|
|
|
|
# We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control.
|
|
self.log_probs = tf.reduce_sum(
|
|
(tf.identity(self.all_log_probs)), axis=1, keepdims=True
|
|
)
|
|
self.old_log_probs = tf.reduce_sum(
|
|
(tf.identity(self.all_old_log_probs)), axis=1, keepdims=True
|
|
)
|
|
|
|
def create_dc_actor_critic(
|
|
self, h_size: int, num_layers: int, vis_encode_type: EncoderType
|
|
) -> None:
|
|
"""
|
|
Creates Discrete control actor-critic model.
|
|
:param h_size: Size of hidden linear layers.
|
|
:param num_layers: Number of hidden linear layers.
|
|
"""
|
|
hidden_streams = self.create_observation_streams(
|
|
1, h_size, num_layers, vis_encode_type
|
|
)
|
|
hidden = hidden_streams[0]
|
|
|
|
if self.use_recurrent:
|
|
self.prev_action = tf.placeholder(
|
|
shape=[None, len(self.act_size)], dtype=tf.int32, name="prev_action"
|
|
)
|
|
prev_action_oh = tf.concat(
|
|
[
|
|
tf.one_hot(self.prev_action[:, i], self.act_size[i])
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
hidden = tf.concat([hidden, prev_action_oh], axis=1)
|
|
|
|
self.memory_in = tf.placeholder(
|
|
shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in"
|
|
)
|
|
hidden, memory_out = self.create_recurrent_encoder(
|
|
hidden, self.memory_in, self.sequence_length
|
|
)
|
|
self.memory_out = tf.identity(memory_out, name="recurrent_out")
|
|
|
|
policy_branches = []
|
|
for size in self.act_size:
|
|
policy_branches.append(
|
|
tf.layers.dense(
|
|
hidden,
|
|
size,
|
|
activation=None,
|
|
use_bias=False,
|
|
kernel_initializer=LearningModel.scaled_init(0.01),
|
|
)
|
|
)
|
|
|
|
self.all_log_probs = tf.concat(policy_branches, axis=1, name="action_probs")
|
|
|
|
self.action_masks = tf.placeholder(
|
|
shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks"
|
|
)
|
|
output, _, normalized_logits = self.create_discrete_action_masking_layer(
|
|
self.all_log_probs, self.action_masks, self.act_size
|
|
)
|
|
|
|
self.output = tf.identity(output)
|
|
self.normalized_logits = tf.identity(normalized_logits, name="action")
|
|
|
|
self.create_value_heads(self.stream_names, hidden)
|
|
|
|
self.action_holder = tf.placeholder(
|
|
shape=[None, len(policy_branches)], dtype=tf.int32, name="action_holder"
|
|
)
|
|
self.action_oh = tf.concat(
|
|
[
|
|
tf.one_hot(self.action_holder[:, i], self.act_size[i])
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
self.selected_actions = tf.stop_gradient(self.action_oh)
|
|
|
|
self.all_old_log_probs = tf.placeholder(
|
|
shape=[None, sum(self.act_size)], dtype=tf.float32, name="old_probabilities"
|
|
)
|
|
_, _, old_normalized_logits = self.create_discrete_action_masking_layer(
|
|
self.all_old_log_probs, self.action_masks, self.act_size
|
|
)
|
|
|
|
action_idx = [0] + list(np.cumsum(self.act_size))
|
|
|
|
self.entropy = tf.reduce_sum(
|
|
(
|
|
tf.stack(
|
|
[
|
|
tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
labels=tf.nn.softmax(
|
|
self.all_log_probs[:, action_idx[i] : action_idx[i + 1]]
|
|
),
|
|
logits=self.all_log_probs[
|
|
:, action_idx[i] : action_idx[i + 1]
|
|
],
|
|
)
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
),
|
|
axis=1,
|
|
)
|
|
|
|
self.log_probs = tf.reduce_sum(
|
|
(
|
|
tf.stack(
|
|
[
|
|
-tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
labels=self.action_oh[:, action_idx[i] : action_idx[i + 1]],
|
|
logits=normalized_logits[
|
|
:, action_idx[i] : action_idx[i + 1]
|
|
],
|
|
)
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
),
|
|
axis=1,
|
|
keepdims=True,
|
|
)
|
|
self.old_log_probs = tf.reduce_sum(
|
|
(
|
|
tf.stack(
|
|
[
|
|
-tf.nn.softmax_cross_entropy_with_logits_v2(
|
|
labels=self.action_oh[:, action_idx[i] : action_idx[i + 1]],
|
|
logits=old_normalized_logits[
|
|
:, action_idx[i] : action_idx[i + 1]
|
|
],
|
|
)
|
|
for i in range(len(self.act_size))
|
|
],
|
|
axis=1,
|
|
)
|
|
),
|
|
axis=1,
|
|
keepdims=True,
|
|
)
|
|
|
|
def create_losses(
|
|
self, probs, old_probs, value_heads, entropy, beta, epsilon, lr, max_step
|
|
):
|
|
"""
|
|
Creates training-specific Tensorflow ops for PPO models.
|
|
:param probs: Current policy probabilities
|
|
:param old_probs: Past policy probabilities
|
|
:param value_heads: Value estimate tensors from each value stream
|
|
:param beta: Entropy regularization strength
|
|
:param entropy: Current policy entropy
|
|
:param epsilon: Value for policy-divergence threshold
|
|
:param lr: Learning rate
|
|
:param max_step: Total number of training steps.
|
|
"""
|
|
self.returns_holders = {}
|
|
self.old_values = {}
|
|
for name in value_heads.keys():
|
|
returns_holder = tf.placeholder(
|
|
shape=[None], dtype=tf.float32, name="{}_returns".format(name)
|
|
)
|
|
old_value = tf.placeholder(
|
|
shape=[None], dtype=tf.float32, name="{}_value_estimate".format(name)
|
|
)
|
|
self.returns_holders[name] = returns_holder
|
|
self.old_values[name] = old_value
|
|
self.advantage = tf.placeholder(
|
|
shape=[None], dtype=tf.float32, name="advantages"
|
|
)
|
|
advantage = tf.expand_dims(self.advantage, -1)
|
|
|
|
decay_epsilon = tf.train.polynomial_decay(
|
|
epsilon, self.global_step, max_step, 0.1, power=1.0
|
|
)
|
|
decay_beta = tf.train.polynomial_decay(
|
|
beta, self.global_step, max_step, 1e-5, power=1.0
|
|
)
|
|
|
|
value_losses = []
|
|
for name, head in value_heads.items():
|
|
clipped_value_estimate = self.old_values[name] + tf.clip_by_value(
|
|
tf.reduce_sum(head, axis=1) - self.old_values[name],
|
|
-decay_epsilon,
|
|
decay_epsilon,
|
|
)
|
|
v_opt_a = tf.squared_difference(
|
|
self.returns_holders[name], tf.reduce_sum(head, axis=1)
|
|
)
|
|
v_opt_b = tf.squared_difference(
|
|
self.returns_holders[name], clipped_value_estimate
|
|
)
|
|
value_loss = tf.reduce_mean(
|
|
tf.dynamic_partition(tf.maximum(v_opt_a, v_opt_b), self.mask, 2)[1]
|
|
)
|
|
value_losses.append(value_loss)
|
|
self.value_loss = tf.reduce_mean(value_losses)
|
|
|
|
r_theta = tf.exp(probs - old_probs)
|
|
p_opt_a = r_theta * advantage
|
|
p_opt_b = (
|
|
tf.clip_by_value(r_theta, 1.0 - decay_epsilon, 1.0 + decay_epsilon)
|
|
* advantage
|
|
)
|
|
self.policy_loss = -tf.reduce_mean(
|
|
tf.dynamic_partition(tf.minimum(p_opt_a, p_opt_b), self.mask, 2)[1]
|
|
)
|
|
# For cleaner stats reporting
|
|
self.abs_policy_loss = tf.abs(self.policy_loss)
|
|
|
|
self.loss = (
|
|
self.policy_loss
|
|
+ 0.5 * self.value_loss
|
|
- decay_beta
|
|
* tf.reduce_mean(tf.dynamic_partition(entropy, self.mask, 2)[1])
|
|
)
|
|
|
|
def create_ppo_optimizer(self):
|
|
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
|
|
self.grads = self.optimizer.compute_gradients(self.loss)
|
|
self.update_batch = self.optimizer.minimize(self.loss)
|