Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

320 行
12 KiB

import random
from typing import Dict, List, Any, Tuple
import numpy as np
from mlagents_envs.base_env import (
ActionSpec,
ActionTuple,
BaseEnv,
BehaviorSpec,
DecisionSteps,
TerminalSteps,
BehaviorMapping,
)
from mlagents_envs.tests.test_rpc_utils import proto_from_steps_and_action
from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import (
AgentInfoActionPairProto,
)
OBS_SIZE = 1
VIS_OBS_SIZE = (20, 20, 3)
STEP_SIZE = 0.2
TIME_PENALTY = 0.01
MIN_STEPS = int(1.0 / STEP_SIZE) + 1
SUCCESS_REWARD = 1.0 + MIN_STEPS * TIME_PENALTY
def clamp(x, min_val, max_val):
return max(min_val, min(x, max_val))
class SimpleEnvironment(BaseEnv):
"""
Very simple "game" - the agent has a position on [-1, 1], gets a reward of 1 if it reaches 1, and a reward of -1 if
it reaches -1. The position is incremented by the action amount (clamped to [-step_size, step_size]).
"""
def __init__(
self,
brain_names,
step_size=STEP_SIZE,
num_visual=0,
num_vector=1,
vis_obs_size=VIS_OBS_SIZE,
vec_obs_size=OBS_SIZE,
action_sizes=(1, 0),
):
super().__init__()
self.num_visual = num_visual
self.num_vector = num_vector
self.vis_obs_size = vis_obs_size
self.vec_obs_size = vec_obs_size
continuous_action_size, discrete_action_size = action_sizes
discrete_tuple = tuple(2 for _ in range(discrete_action_size))
if continuous_action_size > 0:
if discrete_action_size > 0:
action_spec = ActionSpec(continuous_action_size, discrete_tuple)
else:
action_spec = ActionSpec.create_continuous(continuous_action_size)
else:
action_spec = ActionSpec.create_discrete(discrete_tuple)
self.total_action_size = (
continuous_action_size + discrete_action_size
) # to set the goals/positions
self.action_spec = action_spec
self.behavior_spec = BehaviorSpec(self._make_obs_spec(), action_spec)
self.action_spec = action_spec
self.names = brain_names
self.positions: Dict[str, List[float]] = {}
self.step_count: Dict[str, float] = {}
self.random = random.Random(str(self.behavior_spec))
self.goal: Dict[str, int] = {}
self.action = {}
self.rewards: Dict[str, float] = {}
self.final_rewards: Dict[str, List[float]] = {}
self.step_result: Dict[str, Tuple[DecisionSteps, TerminalSteps]] = {}
self.agent_id: Dict[str, int] = {}
self.step_size = step_size # defines the difficulty of the test
for name in self.names:
self.agent_id[name] = 0
self.goal[name] = self.random.choice([-1, 1])
self.rewards[name] = 0
self.final_rewards[name] = []
self._reset_agent(name)
self.action[name] = None
self.step_result[name] = None
def _make_obs_spec(self) -> List[Any]:
obs_spec: List[Any] = []
for _ in range(self.num_vector):
obs_spec.append((self.vec_obs_size,))
for _ in range(self.num_visual):
obs_spec.append(self.vis_obs_size)
return obs_spec
def _make_obs(self, value: float) -> List[np.ndarray]:
obs = []
for _ in range(self.num_vector):
obs.append(np.ones((1, self.vec_obs_size), dtype=np.float32) * value)
for _ in range(self.num_visual):
obs.append(np.ones((1,) + self.vis_obs_size, dtype=np.float32) * value)
return obs
@property
def behavior_specs(self):
behavior_dict = {}
for n in self.names:
behavior_dict[n] = self.behavior_spec
return BehaviorMapping(behavior_dict)
def set_action_for_agent(self, behavior_name, agent_id, action):
pass
def set_actions(self, behavior_name, action):
self.action[behavior_name] = action
def get_steps(self, behavior_name):
return self.step_result[behavior_name]
def _take_action(self, name: str) -> bool:
deltas = []
_act = self.action[name]
if self.action_spec.discrete_size > 0:
for _disc in _act.discrete[0]:
deltas.append(1 if _disc else -1)
if self.action_spec.continuous_size > 0:
for _cont in _act.continuous[0]:
deltas.append(_cont)
for i, _delta in enumerate(deltas):
_delta = clamp(_delta, -self.step_size, self.step_size)
self.positions[name][i] += _delta
self.positions[name][i] = clamp(self.positions[name][i], -1, 1)
self.step_count[name] += 1
# Both must be in 1.0 to be done
done = all(pos >= 1.0 or pos <= -1.0 for pos in self.positions[name])
return done
def _generate_mask(self):
action_mask = None
if self.action_spec.discrete_size > 0:
# LL-Python API will return an empty dim if there is only 1 agent.
ndmask = np.array(
2 * self.action_spec.discrete_size * [False], dtype=np.bool
)
ndmask = np.expand_dims(ndmask, axis=0)
action_mask = [ndmask]
return action_mask
def _compute_reward(self, name: str, done: bool) -> float:
if done:
reward = 0.0
for _pos in self.positions[name]:
reward += (SUCCESS_REWARD * _pos * self.goal[name]) / len(
self.positions[name]
)
else:
reward = -TIME_PENALTY
return reward
def _reset_agent(self, name):
self.goal[name] = self.random.choice([-1, 1])
self.positions[name] = [0.0 for _ in range(self.total_action_size)]
self.step_count[name] = 0
self.rewards[name] = 0
self.agent_id[name] = self.agent_id[name] + 1
def _make_batched_step(
self, name: str, done: bool, reward: float
) -> Tuple[DecisionSteps, TerminalSteps]:
m_vector_obs = self._make_obs(self.goal[name])
m_reward = np.array([reward], dtype=np.float32)
m_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
action_mask = self._generate_mask()
decision_step = DecisionSteps(m_vector_obs, m_reward, m_agent_id, action_mask)
terminal_step = TerminalSteps.empty(self.behavior_spec)
if done:
self.final_rewards[name].append(self.rewards[name])
self._reset_agent(name)
new_vector_obs = self._make_obs(self.goal[name])
(
new_reward,
new_done,
new_agent_id,
new_action_mask,
) = self._construct_reset_step(name)
decision_step = DecisionSteps(
new_vector_obs, new_reward, new_agent_id, new_action_mask
)
terminal_step = TerminalSteps(
m_vector_obs, m_reward, np.array([False], dtype=np.bool), m_agent_id
)
return (decision_step, terminal_step)
def _construct_reset_step(
self, name: str
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
new_reward = np.array([0.0], dtype=np.float32)
new_done = np.array([False], dtype=np.bool)
new_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
new_action_mask = self._generate_mask()
return new_reward, new_done, new_agent_id, new_action_mask
def step(self) -> None:
assert all(action is not None for action in self.action.values())
for name in self.names:
done = self._take_action(name)
reward = self._compute_reward(name, done)
self.rewards[name] += reward
self.step_result[name] = self._make_batched_step(name, done, reward)
def reset(self) -> None: # type: ignore
for name in self.names:
self._reset_agent(name)
self.step_result[name] = self._make_batched_step(name, False, 0.0)
@property
def reset_parameters(self) -> Dict[str, str]:
return {}
def close(self):
pass
class MemoryEnvironment(SimpleEnvironment):
def __init__(self, brain_names, action_sizes=(1, 0), step_size=0.2):
super().__init__(brain_names, action_sizes=action_sizes, step_size=step_size)
# Number of steps to reveal the goal for. Lower is harder. Should be
# less than 1/step_size to force agent to use memory
self.num_show_steps = 2
def _make_batched_step(
self, name: str, done: bool, reward: float
) -> Tuple[DecisionSteps, TerminalSteps]:
recurrent_obs_val = (
self.goal[name] if self.step_count[name] <= self.num_show_steps else 0
)
m_vector_obs = self._make_obs(recurrent_obs_val)
m_reward = np.array([reward], dtype=np.float32)
m_agent_id = np.array([self.agent_id[name]], dtype=np.int32)
action_mask = self._generate_mask()
decision_step = DecisionSteps(m_vector_obs, m_reward, m_agent_id, action_mask)
terminal_step = TerminalSteps.empty(self.behavior_spec)
if done:
self.final_rewards[name].append(self.rewards[name])
self._reset_agent(name)
recurrent_obs_val = (
self.goal[name] if self.step_count[name] <= self.num_show_steps else 0
)
new_vector_obs = self._make_obs(recurrent_obs_val)
(
new_reward,
new_done,
new_agent_id,
new_action_mask,
) = self._construct_reset_step(name)
decision_step = DecisionSteps(
new_vector_obs, new_reward, new_agent_id, new_action_mask
)
terminal_step = TerminalSteps(
m_vector_obs, m_reward, np.array([False], dtype=np.bool), m_agent_id
)
return (decision_step, terminal_step)
class RecordEnvironment(SimpleEnvironment):
def __init__(
self,
brain_names,
step_size=0.2,
num_visual=0,
num_vector=1,
action_sizes=(1, 0),
n_demos=30,
):
super().__init__(
brain_names,
step_size=step_size,
num_visual=num_visual,
num_vector=num_vector,
action_sizes=action_sizes,
)
self.demonstration_protos: Dict[str, List[AgentInfoActionPairProto]] = {}
self.n_demos = n_demos
for name in self.names:
self.demonstration_protos[name] = []
def step(self) -> None:
super().step()
for name in self.names:
if self.action_spec.discrete_size > 0:
action = self.action[name].discrete
else:
action = self.action[name].continuous
self.demonstration_protos[name] += proto_from_steps_and_action(
self.step_result[name][0], self.step_result[name][1], action
)
self.demonstration_protos[name] = self.demonstration_protos[name][
-self.n_demos :
]
def solve(self) -> None:
self.reset()
for _ in range(self.n_demos):
for name in self.names:
if self.action_spec.discrete_size > 0:
self.action[name] = ActionTuple(
np.array([], dtype=np.float32),
np.array(
[[1]] if self.goal[name] > 0 else [[0]], dtype=np.int32
),
)
else:
self.action[name] = ActionTuple(
np.array([[float(self.goal[name])]], dtype=np.float32),
np.array([], dtype=np.int32),
)
self.step()