您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
79 行
2.8 KiB
79 行
2.8 KiB
from typing import Any, Dict, List
|
|
|
|
from mlagents.envs.base_unity_environment import BaseUnityEnvironment
|
|
from mlagents.envs.env_manager import EnvManager, EnvironmentStep
|
|
from mlagents.envs.timers import timed
|
|
from mlagents.envs.action_info import ActionInfo
|
|
from mlagents.envs.brain import BrainParameters
|
|
|
|
|
|
class SimpleEnvManager(EnvManager):
|
|
"""
|
|
Simple implementation of the EnvManager interface that only handles one BaseUnityEnvironment at a time.
|
|
This is generally only useful for testing; see SubprocessEnvManager for a production-quality implementation.
|
|
"""
|
|
|
|
def __init__(self, env: BaseUnityEnvironment):
|
|
super().__init__()
|
|
self.env = env
|
|
self.previous_step: EnvironmentStep = EnvironmentStep(None, {}, None)
|
|
self.previous_all_action_info: Dict[str, ActionInfo] = {}
|
|
|
|
def step(self) -> List[EnvironmentStep]:
|
|
|
|
all_action_info = self._take_step(self.previous_step)
|
|
self.previous_all_action_info = all_action_info
|
|
|
|
actions = {}
|
|
memories = {}
|
|
texts = {}
|
|
values = {}
|
|
for brain_name, action_info in all_action_info.items():
|
|
actions[brain_name] = action_info.action
|
|
memories[brain_name] = action_info.memory
|
|
texts[brain_name] = action_info.text
|
|
values[brain_name] = action_info.value
|
|
all_brain_info = self.env.step(actions, memories, texts, values)
|
|
step_brain_info = all_brain_info
|
|
|
|
step_info = EnvironmentStep(
|
|
self.previous_step.current_all_brain_info,
|
|
step_brain_info,
|
|
self.previous_all_action_info,
|
|
)
|
|
self.previous_step = step_info
|
|
return [step_info]
|
|
|
|
def reset(
|
|
self,
|
|
config: Dict[str, float] = None,
|
|
train_mode: bool = True,
|
|
custom_reset_parameters: Any = None,
|
|
) -> List[EnvironmentStep]: # type: ignore
|
|
all_brain_info = self.env.reset(
|
|
config=config,
|
|
train_mode=train_mode,
|
|
custom_reset_parameters=custom_reset_parameters,
|
|
)
|
|
self.previous_step = EnvironmentStep(None, all_brain_info, None)
|
|
return [self.previous_step]
|
|
|
|
@property
|
|
def external_brains(self) -> Dict[str, BrainParameters]:
|
|
return self.env.external_brains
|
|
|
|
@property
|
|
def reset_parameters(self) -> Dict[str, float]:
|
|
return self.env.reset_parameters
|
|
|
|
def close(self):
|
|
self.env.close()
|
|
|
|
@timed
|
|
def _take_step(self, last_step: EnvironmentStep) -> Dict[str, ActionInfo]:
|
|
all_action_info: Dict[str, ActionInfo] = {}
|
|
for brain_name, brain_info in last_step.current_all_brain_info.items():
|
|
all_action_info[brain_name] = self.policies[brain_name].get_action(
|
|
brain_info
|
|
)
|
|
return all_action_info
|