您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
149 行
4.9 KiB
149 行
4.9 KiB
import pytest
|
|
import mlagents.trainers.tests.mock_brain as mb
|
|
|
|
import numpy as np
|
|
import yaml
|
|
import os
|
|
|
|
from mlagents.trainers.policy.nn_policy import NNPolicy
|
|
from mlagents.trainers.components.bc.module import BCModule
|
|
|
|
|
|
def ppo_dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
behavioral_cloning:
|
|
demo_path: ./Project/Assets/ML-Agents/Examples/Pyramids/Demos/ExpertPyramid.demo
|
|
strength: 1.0
|
|
steps: 10000000
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
)
|
|
|
|
|
|
def create_bc_module(mock_brain, trainer_config, use_rnn, demo_file, tanhresample):
|
|
# model_path = env.external_brain_names[0]
|
|
trainer_config["model_path"] = "testpath"
|
|
trainer_config["keep_checkpoints"] = 3
|
|
trainer_config["use_recurrent"] = use_rnn
|
|
trainer_config["behavioral_cloning"]["demo_path"] = (
|
|
os.path.dirname(os.path.abspath(__file__)) + "/" + demo_file
|
|
)
|
|
|
|
policy = NNPolicy(
|
|
0, mock_brain, trainer_config, False, False, tanhresample, tanhresample
|
|
)
|
|
with policy.graph.as_default():
|
|
bc_module = BCModule(
|
|
policy,
|
|
policy_learning_rate=trainer_config["learning_rate"],
|
|
default_batch_size=trainer_config["batch_size"],
|
|
default_num_epoch=3,
|
|
**trainer_config["behavioral_cloning"],
|
|
)
|
|
policy.initialize_or_load() # Normally the optimizer calls this after the BCModule is created
|
|
return bc_module
|
|
|
|
|
|
# Test default values
|
|
def test_bcmodule_defaults():
|
|
# See if default values match
|
|
mock_brain = mb.create_mock_3dball_brain()
|
|
trainer_config = ppo_dummy_config()
|
|
bc_module = create_bc_module(mock_brain, trainer_config, False, "test.demo", False)
|
|
assert bc_module.num_epoch == 3
|
|
assert bc_module.batch_size == trainer_config["batch_size"]
|
|
# Assign strange values and see if it overrides properly
|
|
trainer_config["behavioral_cloning"]["num_epoch"] = 100
|
|
trainer_config["behavioral_cloning"]["batch_size"] = 10000
|
|
bc_module = create_bc_module(mock_brain, trainer_config, False, "test.demo", False)
|
|
assert bc_module.num_epoch == 100
|
|
assert bc_module.batch_size == 10000
|
|
|
|
|
|
# Test with continuous control env and vector actions
|
|
@pytest.mark.parametrize("is_sac", [True, False], ids=["sac", "ppo"])
|
|
def test_bcmodule_update(is_sac):
|
|
mock_brain = mb.create_mock_3dball_brain()
|
|
bc_module = create_bc_module(
|
|
mock_brain, ppo_dummy_config(), False, "test.demo", is_sac
|
|
)
|
|
stats = bc_module.update()
|
|
for _, item in stats.items():
|
|
assert isinstance(item, np.float32)
|
|
|
|
|
|
# Test with constant pretraining learning rate
|
|
@pytest.mark.parametrize("is_sac", [True, False], ids=["sac", "ppo"])
|
|
def test_bcmodule_constant_lr_update(is_sac):
|
|
trainer_config = ppo_dummy_config()
|
|
mock_brain = mb.create_mock_3dball_brain()
|
|
trainer_config["behavioral_cloning"]["steps"] = 0
|
|
bc_module = create_bc_module(mock_brain, trainer_config, False, "test.demo", is_sac)
|
|
stats = bc_module.update()
|
|
for _, item in stats.items():
|
|
assert isinstance(item, np.float32)
|
|
old_learning_rate = bc_module.current_lr
|
|
|
|
stats = bc_module.update()
|
|
assert old_learning_rate == bc_module.current_lr
|
|
|
|
|
|
# Test with RNN
|
|
@pytest.mark.parametrize("is_sac", [True, False], ids=["sac", "ppo"])
|
|
def test_bcmodule_rnn_update(is_sac):
|
|
mock_brain = mb.create_mock_3dball_brain()
|
|
bc_module = create_bc_module(
|
|
mock_brain, ppo_dummy_config(), True, "test.demo", is_sac
|
|
)
|
|
stats = bc_module.update()
|
|
for _, item in stats.items():
|
|
assert isinstance(item, np.float32)
|
|
|
|
|
|
# Test with discrete control and visual observations
|
|
@pytest.mark.parametrize("is_sac", [True, False], ids=["sac", "ppo"])
|
|
def test_bcmodule_dc_visual_update(is_sac):
|
|
mock_brain = mb.create_mock_banana_brain()
|
|
bc_module = create_bc_module(
|
|
mock_brain, ppo_dummy_config(), False, "testdcvis.demo", is_sac
|
|
)
|
|
stats = bc_module.update()
|
|
for _, item in stats.items():
|
|
assert isinstance(item, np.float32)
|
|
|
|
|
|
# Test with discrete control, visual observations and RNN
|
|
@pytest.mark.parametrize("is_sac", [True, False], ids=["sac", "ppo"])
|
|
def test_bcmodule_rnn_dc_update(is_sac):
|
|
mock_brain = mb.create_mock_banana_brain()
|
|
bc_module = create_bc_module(
|
|
mock_brain, ppo_dummy_config(), True, "testdcvis.demo", is_sac
|
|
)
|
|
stats = bc_module.update()
|
|
for _, item in stats.items():
|
|
assert isinstance(item, np.float32)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|