Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

268 行
11 KiB

from unittest import mock
import pytest
import numpy as np
from gym import spaces
from gym_unity.envs import (
UnityEnv,
UnityGymException,
AgentIdIndexMapper,
AgentIdIndexMapperSlow,
)
from mlagents_envs.base_env import AgentGroupSpec, ActionType, BatchedStepResult
@mock.patch("gym_unity.envs.UnityEnvironment")
def test_gym_wrapper(mock_env):
mock_spec = create_mock_group_spec()
mock_step = create_mock_vector_step_result()
setup_mock_unityenvironment(mock_env, mock_spec, mock_step)
env = UnityEnv(" ", use_visual=False, multiagent=False)
assert isinstance(env, UnityEnv)
assert isinstance(env.reset(), np.ndarray)
actions = env.action_space.sample()
assert actions.shape[0] == 2
obs, rew, done, info = env.step(actions)
assert env.observation_space.contains(obs)
assert isinstance(obs, np.ndarray)
assert isinstance(rew, float)
assert isinstance(done, (bool, np.bool_))
assert isinstance(info, dict)
@mock.patch("gym_unity.envs.UnityEnvironment")
def test_multi_agent(mock_env):
mock_spec = create_mock_group_spec()
mock_step = create_mock_vector_step_result(num_agents=2)
setup_mock_unityenvironment(mock_env, mock_spec, mock_step)
with pytest.raises(UnityGymException):
UnityEnv(" ", multiagent=False)
env = UnityEnv(" ", use_visual=False, multiagent=True)
assert isinstance(env.reset(), list)
actions = [env.action_space.sample() for i in range(env.number_agents)]
obs, rew, done, info = env.step(actions)
assert isinstance(obs, list)
assert isinstance(rew, list)
assert isinstance(done, list)
assert isinstance(info, dict)
@mock.patch("gym_unity.envs.UnityEnvironment")
def test_branched_flatten(mock_env):
mock_spec = create_mock_group_spec(
vector_action_space_type="discrete", vector_action_space_size=[2, 2, 3]
)
mock_step = create_mock_vector_step_result(num_agents=1)
setup_mock_unityenvironment(mock_env, mock_spec, mock_step)
env = UnityEnv(" ", use_visual=False, multiagent=False, flatten_branched=True)
assert isinstance(env.action_space, spaces.Discrete)
assert env.action_space.n == 12
assert env._flattener.lookup_action(0) == [0, 0, 0]
assert env._flattener.lookup_action(11) == [1, 1, 2]
# Check that False produces a MultiDiscrete
env = UnityEnv(" ", use_visual=False, multiagent=False, flatten_branched=False)
assert isinstance(env.action_space, spaces.MultiDiscrete)
@pytest.mark.parametrize("use_uint8", [True, False], ids=["float", "uint8"])
@mock.patch("gym_unity.envs.UnityEnvironment")
def test_gym_wrapper_visual(mock_env, use_uint8):
mock_spec = create_mock_group_spec(number_visual_observations=1)
mock_step = create_mock_vector_step_result(number_visual_observations=1)
setup_mock_unityenvironment(mock_env, mock_spec, mock_step)
env = UnityEnv(" ", use_visual=True, multiagent=False, uint8_visual=use_uint8)
assert isinstance(env, UnityEnv)
assert isinstance(env.reset(), np.ndarray)
actions = env.action_space.sample()
assert actions.shape[0] == 2
obs, rew, done, info = env.step(actions)
assert env.observation_space.contains(obs)
assert isinstance(obs, np.ndarray)
assert isinstance(rew, float)
assert isinstance(done, (bool, np.bool_))
assert isinstance(info, dict)
@mock.patch("gym_unity.envs.UnityEnvironment")
def test_sanitize_action_shuffled_id(mock_env):
mock_spec = create_mock_group_spec(
vector_action_space_type="discrete", vector_action_space_size=[2, 2, 3]
)
mock_step = create_mock_vector_step_result(num_agents=5)
mock_step.agent_id = np.array(range(5))
setup_mock_unityenvironment(mock_env, mock_spec, mock_step)
env = UnityEnv(" ", use_visual=False, multiagent=True)
shuffled_step_result = create_mock_vector_step_result(num_agents=5)
shuffled_order = [4, 2, 3, 1, 0]
shuffled_step_result.reward = np.array(shuffled_order)
shuffled_step_result.agent_id = np.array(shuffled_order)
sanitized_result = env._sanitize_info(shuffled_step_result)
for expected_reward, reward in zip(range(5), sanitized_result.reward):
assert expected_reward == reward
for expected_agent_id, agent_id in zip(range(5), sanitized_result.agent_id):
assert expected_agent_id == agent_id
@mock.patch("gym_unity.envs.UnityEnvironment")
def test_sanitize_action_one_agent_done(mock_env):
mock_spec = create_mock_group_spec(
vector_action_space_type="discrete", vector_action_space_size=[2, 2, 3]
)
mock_step = create_mock_vector_step_result(num_agents=5)
mock_step.agent_id = np.array(range(5))
setup_mock_unityenvironment(mock_env, mock_spec, mock_step)
env = UnityEnv(" ", use_visual=False, multiagent=True)
received_step_result = create_mock_vector_step_result(num_agents=6)
received_step_result.agent_id = np.array(range(6))
# agent #3 (id = 2) is Done
received_step_result.done = np.array([False] * 2 + [True] + [False] * 3)
sanitized_result = env._sanitize_info(received_step_result)
for expected_agent_id, agent_id in zip([0, 1, 5, 3, 4], sanitized_result.agent_id):
assert expected_agent_id == agent_id
@mock.patch("gym_unity.envs.UnityEnvironment")
def test_sanitize_action_new_agent_done(mock_env):
mock_spec = create_mock_group_spec(
vector_action_space_type="discrete", vector_action_space_size=[2, 2, 3]
)
mock_step = create_mock_vector_step_result(num_agents=3)
mock_step.agent_id = np.array(range(5))
setup_mock_unityenvironment(mock_env, mock_spec, mock_step)
env = UnityEnv(" ", use_visual=False, multiagent=True)
received_step_result = create_mock_vector_step_result(num_agents=7)
received_step_result.agent_id = np.array(range(7))
# agent #3 (id = 2) is Done
# so is the "new" agent (id = 5)
done = [False] * 7
done[2] = True
done[5] = True
received_step_result.done = np.array(done)
sanitized_result = env._sanitize_info(received_step_result)
for expected_agent_id, agent_id in zip([0, 1, 6, 3, 4], sanitized_result.agent_id):
assert expected_agent_id == agent_id
@mock.patch("gym_unity.envs.UnityEnvironment")
def test_sanitize_action_single_agent_multiple_done(mock_env):
mock_spec = create_mock_group_spec(
vector_action_space_type="discrete", vector_action_space_size=[2, 2, 3]
)
mock_step = create_mock_vector_step_result(num_agents=1)
mock_step.agent_id = np.array(range(1))
setup_mock_unityenvironment(mock_env, mock_spec, mock_step)
env = UnityEnv(" ", use_visual=False, multiagent=False)
received_step_result = create_mock_vector_step_result(num_agents=3)
received_step_result.agent_id = np.array(range(3))
# original agent (id = 0) is Done
# so is the "new" agent (id = 1)
done = [True, True, False]
received_step_result.done = np.array(done)
sanitized_result = env._sanitize_info(received_step_result)
for expected_agent_id, agent_id in zip([2], sanitized_result.agent_id):
assert expected_agent_id == agent_id
# Helper methods
def create_mock_group_spec(
number_visual_observations=0,
vector_action_space_type="continuous",
vector_observation_space_size=3,
vector_action_space_size=None,
):
"""
Creates a mock BrainParameters object with parameters.
"""
# Avoid using mutable object as default param
act_type = ActionType.DISCRETE
if vector_action_space_type == "continuous":
act_type = ActionType.CONTINUOUS
if vector_action_space_size is None:
vector_action_space_size = 2
else:
vector_action_space_size = vector_action_space_size[0]
else:
if vector_action_space_size is None:
vector_action_space_size = (2,)
else:
vector_action_space_size = tuple(vector_action_space_size)
obs_shapes = [(vector_observation_space_size,)]
for _ in range(number_visual_observations):
obs_shapes += [(8, 8, 3)]
return AgentGroupSpec(obs_shapes, act_type, vector_action_space_size)
def create_mock_vector_step_result(num_agents=1, number_visual_observations=0):
"""
Creates a mock BatchedStepResult with vector observations. Imitates constant
vector observations, rewards, dones, and agents.
:int num_agents: Number of "agents" to imitate in your BatchedStepResult values.
"""
obs = [np.array([num_agents * [1, 2, 3]]).reshape(num_agents, 3)]
if number_visual_observations:
obs += [np.zeros(shape=(num_agents, 8, 8, 3), dtype=np.float32)]
rewards = np.array(num_agents * [1.0])
done = np.array(num_agents * [False])
agents = np.array(range(0, num_agents))
return BatchedStepResult(obs, rewards, done, done, agents, None)
def setup_mock_unityenvironment(mock_env, mock_spec, mock_result):
"""
Takes a mock UnityEnvironment and adds the appropriate properties, defined by the mock
GroupSpec and BatchedStepResult.
:Mock mock_env: A mock UnityEnvironment, usually empty.
:Mock mock_spec: An AgentGroupSpec object that specifies the params of this environment.
:Mock mock_result: A BatchedStepResult object that will be returned at each step and reset.
"""
mock_env.return_value.get_agent_groups.return_value = ["MockBrain"]
mock_env.return_value.get_agent_group_spec.return_value = mock_spec
mock_env.return_value.get_step_result.return_value = mock_result
@pytest.mark.parametrize("mapper_cls", [AgentIdIndexMapper, AgentIdIndexMapperSlow])
def test_agent_id_index_mapper(mapper_cls):
mapper = mapper_cls()
initial_agent_ids = [1001, 1002, 1003, 1004]
mapper.set_initial_agents(initial_agent_ids)
# Mark some agents as done with their last rewards.
mapper.mark_agent_done(1001, 42.0)
mapper.mark_agent_done(1004, 1337.0)
# Make sure we can handle an unknown agent id being marked done.
# This can happen when an agent ends an episode on the same step it starts.
mapper.mark_agent_done(9999, -1.0)
# Now add new agents, and get the rewards of the agent they replaced.
old_reward1 = mapper.register_new_agent_id(2001)
old_reward2 = mapper.register_new_agent_id(2002)
# Order of the rewards don't matter
assert {old_reward1, old_reward2} == {42.0, 1337.0}
new_agent_ids = [1002, 1003, 2001, 2002]
permutation = mapper.get_id_permutation(new_agent_ids)
# Make sure it's actually a permutation - needs to contain 0..N-1 with no repeats.
assert set(permutation) == set(range(0, 4))
# For initial agents that were in the initial group, they need to be in the same slot.
# Agents that were added later can appear in any free slot.
permuted_ids = [new_agent_ids[i] for i in permutation]
for idx, agent_id in enumerate(initial_agent_ids):
if agent_id in permuted_ids:
assert permuted_ids[idx] == agent_id