您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
186 行
6.6 KiB
186 行
6.6 KiB
using System.Collections.Generic;
|
|
using Barracuda;
|
|
using NUnit.Framework;
|
|
using UnityEngine;
|
|
using MLAgents.Inference;
|
|
using MLAgents.Policies;
|
|
|
|
namespace MLAgents.Tests
|
|
{
|
|
[TestFixture]
|
|
public class EditModeTestInternalBrainTensorGenerator
|
|
{
|
|
[SetUp]
|
|
public void SetUp()
|
|
{
|
|
if (Academy.IsInitialized)
|
|
{
|
|
Academy.Instance.Dispose();
|
|
}
|
|
}
|
|
|
|
static List<TestAgent> GetFakeAgents()
|
|
{
|
|
var goA = new GameObject("goA");
|
|
var bpA = goA.AddComponent<BehaviorParameters>();
|
|
bpA.brainParameters.vectorObservationSize = 3;
|
|
bpA.brainParameters.numStackedVectorObservations = 1;
|
|
var agentA = goA.AddComponent<TestAgent>();
|
|
|
|
var goB = new GameObject("goB");
|
|
var bpB = goB.AddComponent<BehaviorParameters>();
|
|
bpB.brainParameters.vectorObservationSize = 3;
|
|
bpB.brainParameters.numStackedVectorObservations = 1;
|
|
var agentB = goB.AddComponent<TestAgent>();
|
|
|
|
var agents = new List<TestAgent> { agentA, agentB };
|
|
foreach (var agent in agents)
|
|
{
|
|
agent.LazyInitialize();
|
|
}
|
|
agentA.collectObservationsSensor.AddObservation(new Vector3(1, 2, 3));
|
|
agentB.collectObservationsSensor.AddObservation(new Vector3(4, 5, 6));
|
|
|
|
var infoA = new AgentInfo
|
|
{
|
|
storedVectorActions = new[] { 1f, 2f },
|
|
discreteActionMasks = null
|
|
};
|
|
|
|
var infoB = new AgentInfo
|
|
{
|
|
storedVectorActions = new[] { 3f, 4f },
|
|
discreteActionMasks = new[] { true, false, false, false, false },
|
|
};
|
|
|
|
|
|
agentA._Info = infoA;
|
|
agentB._Info = infoB;
|
|
return agents;
|
|
}
|
|
|
|
[Test]
|
|
public void Construction()
|
|
{
|
|
var alloc = new TensorCachingAllocator();
|
|
var mem = new Dictionary<int, List<float>>();
|
|
var tensorGenerator = new TensorGenerator(0, alloc, mem);
|
|
Assert.IsNotNull(tensorGenerator);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GenerateBatchSize()
|
|
{
|
|
var inputTensor = new TensorProxy();
|
|
var alloc = new TensorCachingAllocator();
|
|
const int batchSize = 4;
|
|
var generator = new BatchSizeGenerator(alloc);
|
|
generator.Generate(inputTensor, batchSize, null);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0], batchSize);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GenerateSequenceLength()
|
|
{
|
|
var inputTensor = new TensorProxy();
|
|
var alloc = new TensorCachingAllocator();
|
|
const int batchSize = 4;
|
|
var generator = new SequenceLengthGenerator(alloc);
|
|
generator.Generate(inputTensor, batchSize, null);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0], 1);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GenerateVectorObservation()
|
|
{
|
|
var inputTensor = new TensorProxy
|
|
{
|
|
shape = new long[] { 2, 3 }
|
|
};
|
|
const int batchSize = 4;
|
|
var agentInfos = GetFakeAgents();
|
|
var alloc = new TensorCachingAllocator();
|
|
var generator = new VectorObservationGenerator(alloc);
|
|
generator.AddSensorIndex(0);
|
|
generator.AddSensorIndex(1);
|
|
generator.AddSensorIndex(2);
|
|
var agent0 = agentInfos[0];
|
|
var agent1 = agentInfos[1];
|
|
var inputs = new List<AgentInfoSensorsPair>
|
|
{
|
|
new AgentInfoSensorsPair {agentInfo = agent0._Info, sensors = agent0.sensors},
|
|
new AgentInfoSensorsPair {agentInfo = agent1._Info, sensors = agent1.sensors},
|
|
};
|
|
generator.Generate(inputTensor, batchSize, inputs);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0, 0], 1);
|
|
Assert.AreEqual(inputTensor.data[0, 2], 3);
|
|
Assert.AreEqual(inputTensor.data[1, 0], 4);
|
|
Assert.AreEqual(inputTensor.data[1, 2], 6);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GeneratePreviousActionInput()
|
|
{
|
|
var inputTensor = new TensorProxy
|
|
{
|
|
shape = new long[] { 2, 2 },
|
|
valueType = TensorProxy.TensorType.Integer
|
|
};
|
|
const int batchSize = 4;
|
|
var agentInfos = GetFakeAgents();
|
|
var alloc = new TensorCachingAllocator();
|
|
var generator = new PreviousActionInputGenerator(alloc);
|
|
var agent0 = agentInfos[0];
|
|
var agent1 = agentInfos[1];
|
|
var inputs = new List<AgentInfoSensorsPair>
|
|
{
|
|
new AgentInfoSensorsPair {agentInfo = agent0._Info, sensors = agent0.sensors},
|
|
new AgentInfoSensorsPair {agentInfo = agent1._Info, sensors = agent1.sensors},
|
|
};
|
|
generator.Generate(inputTensor, batchSize, inputs);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0, 0], 1);
|
|
Assert.AreEqual(inputTensor.data[0, 1], 2);
|
|
Assert.AreEqual(inputTensor.data[1, 0], 3);
|
|
Assert.AreEqual(inputTensor.data[1, 1], 4);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void GenerateActionMaskInput()
|
|
{
|
|
var inputTensor = new TensorProxy
|
|
{
|
|
shape = new long[] { 2, 5 },
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
const int batchSize = 4;
|
|
var agentInfos = GetFakeAgents();
|
|
var alloc = new TensorCachingAllocator();
|
|
var generator = new ActionMaskInputGenerator(alloc);
|
|
|
|
var agent0 = agentInfos[0];
|
|
var agent1 = agentInfos[1];
|
|
var inputs = new List<AgentInfoSensorsPair>
|
|
{
|
|
new AgentInfoSensorsPair {agentInfo = agent0._Info, sensors = agent0.sensors},
|
|
new AgentInfoSensorsPair {agentInfo = agent1._Info, sensors = agent1.sensors},
|
|
};
|
|
|
|
generator.Generate(inputTensor, batchSize, inputs);
|
|
Assert.IsNotNull(inputTensor.data);
|
|
Assert.AreEqual(inputTensor.data[0, 0], 1);
|
|
Assert.AreEqual(inputTensor.data[0, 4], 1);
|
|
Assert.AreEqual(inputTensor.data[1, 0], 0);
|
|
Assert.AreEqual(inputTensor.data[1, 4], 1);
|
|
alloc.Dispose();
|
|
}
|
|
}
|
|
}
|