您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
359 行
14 KiB
359 行
14 KiB
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using UnityEngine;
|
|
using Google.Protobuf;
|
|
|
|
namespace MLAgents
|
|
{
|
|
/// <summary>
|
|
/// The batcher is an RL specific class that makes sure that the information each object in
|
|
/// Unity (Academy and Brains) wants to send to External is appropriately batched together
|
|
/// and sent only when necessary.
|
|
///
|
|
/// The Batcher will only send a Message to the Communicator when either :
|
|
/// 1 - The academy is done
|
|
/// 2 - At least one brain has data to send
|
|
///
|
|
/// At each step, the batcher will keep track of the brains that queried the batcher for that
|
|
/// step. The batcher can only send the batched data when all the Brains have queried the
|
|
/// Batcher.
|
|
/// </summary>
|
|
public class Batcher
|
|
{
|
|
/// The default number of agents in the scene
|
|
private const int NumAgents = 32;
|
|
|
|
/// Keeps track of which brains have data to send on the current step
|
|
Dictionary<string, bool> m_hasData =
|
|
new Dictionary<string, bool>();
|
|
/// Keeps track of which brains queried the batcher on the current step
|
|
Dictionary<string, bool> m_hasQueried =
|
|
new Dictionary<string, bool>();
|
|
/// Keeps track of the agents of each brain on the current step
|
|
Dictionary<string, List<Agent>> m_currentAgents =
|
|
new Dictionary<string, List<Agent>>();
|
|
/// The Communicator of the batcher, sends a message at most once per step
|
|
Communicator m_communicator;
|
|
/// The current UnityRLOutput to be sent when all the brains queried the batcher
|
|
CommunicatorObjects.UnityRLOutput m_currentUnityRLOutput =
|
|
new CommunicatorObjects.UnityRLOutput();
|
|
/// Keeps track of the done flag of the Academy
|
|
bool m_academyDone;
|
|
/// Keeps track of last CommandProto sent by External
|
|
CommunicatorObjects.CommandProto m_command;
|
|
/// Keeps track of last EnvironmentParametersProto sent by External
|
|
CommunicatorObjects.EnvironmentParametersProto m_environmentParameters;
|
|
/// Keeps track of last training mode sent by External
|
|
bool m_isTraining;
|
|
|
|
/// Keeps track of the number of messages received
|
|
private ulong m_messagesReceived;
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the Batcher class.
|
|
/// </summary>
|
|
/// <param name="communicator">The communicator to be used by the batcher.</param>
|
|
public Batcher(Communicator communicator)
|
|
{
|
|
this.m_communicator = communicator;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Sends the academy parameters through the Communicator.
|
|
/// Is used by the academy to send the AcademyParameters to the communicator.
|
|
/// </summary>
|
|
/// <returns>The External Initialization Parameters received.</returns>
|
|
/// <param name="academyParameters">The Unity Initialization Paramters to be sent.</param>
|
|
public CommunicatorObjects.UnityRLInitializationInput SendAcademyParameters(
|
|
CommunicatorObjects.UnityRLInitializationOutput academyParameters)
|
|
{
|
|
CommunicatorObjects.UnityInput input;
|
|
var initializationInput = new CommunicatorObjects.UnityInput();
|
|
try
|
|
{
|
|
initializationInput = m_communicator.Initialize(
|
|
new CommunicatorObjects.UnityOutput
|
|
{
|
|
RlInitializationOutput = academyParameters
|
|
},
|
|
out input);
|
|
}
|
|
catch
|
|
{
|
|
throw new UnityAgentsException(
|
|
"The Communicator was unable to connect. Please make sure the External " +
|
|
"process is ready to accept communication with Unity.");
|
|
}
|
|
|
|
var firstRlInput = input.RlInput;
|
|
m_command = firstRlInput.Command;
|
|
m_environmentParameters = firstRlInput.EnvironmentParameters;
|
|
m_isTraining = firstRlInput.IsTraining;
|
|
return initializationInput.RlInitializationInput;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Registers the done flag of the academy to the next output to be sent
|
|
/// to the communicator.
|
|
/// </summary>
|
|
/// <param name="done">If set to <c>true</c>
|
|
/// The academy done state will be sent to External at the next Exchange.</param>
|
|
public void RegisterAcademyDoneFlag(bool done)
|
|
{
|
|
m_academyDone = done;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the command. Is used by the academy to get reset or quit signals.
|
|
/// </summary>
|
|
/// <returns>The current command.</returns>
|
|
public CommunicatorObjects.CommandProto GetCommand()
|
|
{
|
|
return m_command;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the number of messages received so far. Can be used to check for new messages.
|
|
/// </summary>
|
|
/// <returns>The number of messages received since start of the simulation</returns>
|
|
public ulong GetNumberMessageReceived()
|
|
{
|
|
return m_messagesReceived;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the environment parameters. Is used by the academy to update
|
|
/// the environment parameters.
|
|
/// </summary>
|
|
/// <returns>The environment parameters.</returns>
|
|
public CommunicatorObjects.EnvironmentParametersProto GetEnvironmentParameters()
|
|
{
|
|
return m_environmentParameters;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets the last training_mode flag External sent
|
|
/// </summary>
|
|
/// <returns><c>true</c>, if training mode is requested, <c>false</c> otherwise.</returns>
|
|
public bool GetIsTraining()
|
|
{
|
|
return m_isTraining;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds the brain to the list of brains which will be sending information to External.
|
|
/// </summary>
|
|
/// <param name="brainKey">Brain key.</param>
|
|
public void SubscribeBrain(string brainKey)
|
|
{
|
|
m_hasQueried[brainKey] = false;
|
|
m_hasData[brainKey] = false;
|
|
m_currentAgents[brainKey] = new List<Agent>(NumAgents);
|
|
m_currentUnityRLOutput.AgentInfos.Add(
|
|
brainKey,
|
|
new CommunicatorObjects.UnityRLOutput.Types.ListAgentInfoProto());
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts a AgentInfo to a protobuffer generated AgentInfoProto
|
|
/// </summary>
|
|
/// <returns>The protobuf verison of the AgentInfo.</returns>
|
|
/// <param name="info">The AgentInfo to convert.</param>
|
|
public static CommunicatorObjects.AgentInfoProto
|
|
AgentInfoConvertor(AgentInfo info)
|
|
{
|
|
|
|
var agentInfoProto = new CommunicatorObjects.AgentInfoProto
|
|
{
|
|
StackedVectorObservation = { info.stackedVectorObservation },
|
|
StoredVectorActions = { info.storedVectorActions },
|
|
StoredTextActions = info.storedTextActions,
|
|
TextObservation = info.textObservation,
|
|
Reward = info.reward,
|
|
MaxStepReached = info.maxStepReached,
|
|
Done = info.done,
|
|
Id = info.id,
|
|
};
|
|
if (info.memories != null)
|
|
{
|
|
agentInfoProto.Memories.Add(info.memories);
|
|
}
|
|
if (info.actionMasks != null)
|
|
{
|
|
agentInfoProto.ActionMask.AddRange(info.actionMasks);
|
|
}
|
|
foreach (Texture2D obs in info.visualObservations)
|
|
{
|
|
agentInfoProto.VisualObservations.Add(
|
|
ByteString.CopyFrom(obs.EncodeToPNG())
|
|
);
|
|
}
|
|
return agentInfoProto;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts a Brain into to a Protobuff BrainInfoProto so it can be sent
|
|
/// </summary>
|
|
/// <returns>The BrainInfoProto generated.</returns>
|
|
/// <param name="brainParameters">The BrainParameters.</param>
|
|
/// <param name="name">The name of the brain.</param>
|
|
/// <param name="type">The type of brain.</param>
|
|
public static CommunicatorObjects.BrainParametersProto BrainParametersConvertor(
|
|
BrainParameters brainParameters, string name, CommunicatorObjects.BrainTypeProto type)
|
|
{
|
|
|
|
var brainParametersProto = new CommunicatorObjects.BrainParametersProto
|
|
{
|
|
VectorObservationSize = brainParameters.vectorObservationSize,
|
|
NumStackedVectorObservations = brainParameters.numStackedVectorObservations,
|
|
VectorActionSize = {brainParameters.vectorActionSize},
|
|
VectorActionSpaceType =
|
|
(CommunicatorObjects.SpaceTypeProto)brainParameters.vectorActionSpaceType,
|
|
BrainName = name,
|
|
BrainType = type
|
|
};
|
|
brainParametersProto.VectorActionDescriptions.AddRange(
|
|
brainParameters.vectorActionDescriptions);
|
|
foreach (resolution res in brainParameters.cameraResolutions)
|
|
{
|
|
brainParametersProto.CameraResolutions.Add(
|
|
new CommunicatorObjects.ResolutionProto
|
|
{
|
|
Width = res.width,
|
|
Height = res.height,
|
|
GrayScale = res.blackAndWhite
|
|
});
|
|
}
|
|
return brainParametersProto;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Sends the brain info. If at least one brain has an agent in need of
|
|
/// a decision or if the academy is done, the data is sent via
|
|
/// Communicator. Else, a new step is realized. The data can only be
|
|
/// sent once all the brains that subscribed to the batcher have tried
|
|
/// to send information.
|
|
/// </summary>
|
|
/// <param name="brainKey">Brain key.</param>
|
|
/// <param name="agentInfo">Agent info.</param>
|
|
public void SendBrainInfo(
|
|
string brainKey, Dictionary<Agent, AgentInfo> agentInfo)
|
|
{
|
|
// If no communicator is initialized, the Batcher will not transmit
|
|
// BrainInfo
|
|
if (m_communicator == null)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// The brain tried called GiveBrainInfo, update m_hasQueried
|
|
m_hasQueried[brainKey] = true;
|
|
// Populate the currentAgents dictionary
|
|
m_currentAgents[brainKey].Clear();
|
|
foreach (Agent agent in agentInfo.Keys)
|
|
{
|
|
m_currentAgents[brainKey].Add(agent);
|
|
}
|
|
// If at least one agent has data to send, then append data to
|
|
// the message and update hasSentState
|
|
if (m_currentAgents[brainKey].Count > 0)
|
|
{
|
|
foreach (Agent agent in m_currentAgents[brainKey])
|
|
{
|
|
CommunicatorObjects.AgentInfoProto agentInfoProto =
|
|
AgentInfoConvertor(agentInfo[agent]);
|
|
m_currentUnityRLOutput.AgentInfos[brainKey].Value.Add(agentInfoProto);
|
|
}
|
|
m_hasData[brainKey] = true;
|
|
}
|
|
|
|
// If any agent needs to send data, then the whole message
|
|
// must be sent
|
|
if (m_hasQueried.Values.All(x => x))
|
|
{
|
|
if (m_hasData.Values.Any(x => x) || m_academyDone)
|
|
{
|
|
m_currentUnityRLOutput.GlobalDone = m_academyDone;
|
|
SendBatchedMessageHelper();
|
|
}
|
|
// The message was just sent so we must reset hasSentState and
|
|
// triedSendState
|
|
foreach (string k in m_currentAgents.Keys)
|
|
{
|
|
m_hasData[k] = false;
|
|
m_hasQueried[k] = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Helper method that sends the curent UnityRLOutput, receives the next UnityInput and
|
|
/// Applies the appropriate AgentAction to the agents.
|
|
/// </summary>
|
|
void SendBatchedMessageHelper()
|
|
{
|
|
var input = m_communicator.Exchange(
|
|
new CommunicatorObjects.UnityOutput{
|
|
RlOutput = m_currentUnityRLOutput
|
|
});
|
|
m_messagesReceived += 1;
|
|
|
|
foreach (string k in m_currentUnityRLOutput.AgentInfos.Keys)
|
|
{
|
|
m_currentUnityRLOutput.AgentInfos[k].Value.Clear();
|
|
}
|
|
if (input == null)
|
|
{
|
|
m_command = CommunicatorObjects.CommandProto.Quit;
|
|
return;
|
|
}
|
|
|
|
CommunicatorObjects.UnityRLInput rlInput = input.RlInput;
|
|
|
|
if (rlInput == null)
|
|
{
|
|
m_command = CommunicatorObjects.CommandProto.Quit;
|
|
return;
|
|
}
|
|
|
|
m_command = rlInput.Command;
|
|
m_environmentParameters = rlInput.EnvironmentParameters;
|
|
m_isTraining = rlInput.IsTraining;
|
|
|
|
if (rlInput.AgentActions == null)
|
|
{
|
|
return;
|
|
}
|
|
|
|
foreach (var brainName in rlInput.AgentActions.Keys)
|
|
{
|
|
if (!m_currentAgents[brainName].Any())
|
|
{
|
|
continue;
|
|
}
|
|
if (!rlInput.AgentActions[brainName].Value.Any())
|
|
{
|
|
continue;
|
|
}
|
|
for (var i = 0; i < m_currentAgents[brainName].Count(); i++)
|
|
{
|
|
var agent = m_currentAgents[brainName][i];
|
|
var action = rlInput.AgentActions[brainName].Value[i];
|
|
agent.UpdateVectorAction(
|
|
action.VectorActions.ToArray());
|
|
agent.UpdateMemoriesAction(
|
|
action.Memories.ToList());
|
|
agent.UpdateTextAction(
|
|
action.TextActions);
|
|
agent.UpdateValueAction(
|
|
action.Value);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
|