Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

163 行
5.5 KiB

import yaml
from typing import Any, Dict, TextIO
from mlagents.trainers.meta_curriculum import MetaCurriculum
from mlagents.envs.exception import UnityEnvironmentException
from mlagents.trainers.trainer import Trainer
from mlagents.envs.brain import BrainParameters
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.sac.trainer import SACTrainer
from mlagents.trainers.bc.offline_trainer import OfflineBCTrainer
class TrainerFactory:
def __init__(
self,
trainer_config: Any,
summaries_dir: str,
run_id: str,
model_path: str,
keep_checkpoints: int,
train_model: bool,
load_model: bool,
seed: int,
meta_curriculum: MetaCurriculum = None,
multi_gpu: bool = False,
):
self.trainer_config = trainer_config
self.summaries_dir = summaries_dir
self.run_id = run_id
self.model_path = model_path
self.keep_checkpoints = keep_checkpoints
self.train_model = train_model
self.load_model = load_model
self.seed = seed
self.meta_curriculum = meta_curriculum
self.multi_gpu = multi_gpu
def generate(self, brain_parameters: BrainParameters) -> Trainer:
return initialize_trainer(
self.trainer_config,
brain_parameters,
self.summaries_dir,
self.run_id,
self.model_path,
self.keep_checkpoints,
self.train_model,
self.load_model,
self.seed,
self.meta_curriculum,
self.multi_gpu,
)
def initialize_trainer(
trainer_config: Any,
brain_parameters: BrainParameters,
summaries_dir: str,
run_id: str,
model_path: str,
keep_checkpoints: int,
train_model: bool,
load_model: bool,
seed: int,
meta_curriculum: MetaCurriculum = None,
multi_gpu: bool = False,
) -> Trainer:
"""
Initializes a trainer given a provided trainer configuration and brain parameters, as well as
some general training session options.
:param trainer_config: Original trainer configuration loaded from YAML
:param brain_parameters: BrainParameters provided by the Unity environment
:param summaries_dir: Directory to store trainer summary statistics
:param run_id: Run ID to associate with this training run
:param model_path: Path to save the model
:param keep_checkpoints: How many model checkpoints to keep
:param train_model: Whether to train the model (vs. run inference)
:param load_model: Whether to load the model or randomly initialize
:param seed: The random seed to use
:param meta_curriculum: Optional meta_curriculum, used to determine a reward buffer length for PPOTrainer
:param multi_gpu: Whether to use multi-GPU training
:return:
"""
trainer_parameters = trainer_config["default"].copy()
brain_name = brain_parameters.brain_name
trainer_parameters["summary_path"] = "{basedir}/{name}".format(
basedir=summaries_dir, name=str(run_id) + "_" + brain_name
)
trainer_parameters["model_path"] = "{basedir}/{name}".format(
basedir=model_path, name=brain_name
)
trainer_parameters["keep_checkpoints"] = keep_checkpoints
if brain_name in trainer_config:
_brain_key: Any = brain_name
while not isinstance(trainer_config[_brain_key], dict):
_brain_key = trainer_config[_brain_key]
trainer_parameters.update(trainer_config[_brain_key])
trainer = None
if trainer_parameters["trainer"] == "offline_bc":
trainer = OfflineBCTrainer(
brain_parameters, trainer_parameters, train_model, load_model, seed, run_id
)
elif trainer_parameters["trainer"] == "ppo":
trainer = PPOTrainer(
brain_parameters,
meta_curriculum.brains_to_curriculums[brain_name].min_lesson_length
if meta_curriculum
else 1,
trainer_parameters,
train_model,
load_model,
seed,
run_id,
multi_gpu,
)
elif trainer_parameters["trainer"] == "sac":
trainer = SACTrainer(
brain_parameters,
meta_curriculum.brains_to_curriculums[brain_name].min_lesson_length
if meta_curriculum
else 1,
trainer_parameters,
train_model,
load_model,
seed,
run_id,
)
else:
raise UnityEnvironmentException(
"The trainer config contains "
"an unknown trainer type for "
"brain {}".format(brain_name)
)
return trainer
def load_config(config_path: str) -> Dict[str, Any]:
try:
with open(config_path) as data_file:
return _load_config(data_file)
except IOError:
raise UnityEnvironmentException(
f"Config file could not be found at {config_path}."
)
except UnicodeDecodeError:
raise UnityEnvironmentException(
f"There was an error decoding Config file from {config_path}. "
f"Make sure your file is save using UTF-8"
)
def _load_config(fp: TextIO) -> Dict[str, Any]:
"""
Load the yaml config from the file-like object.
"""
try:
return yaml.safe_load(fp)
except yaml.parser.ParserError as e:
raise UnityEnvironmentException(
"Error parsing yaml file. Please check for formatting errors. "
"A tool such as http://www.yamllint.com/ can be helpful with this."
) from e