Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

245 行
10 KiB

import sys
from typing import List, Dict, Deque, TypeVar, Generic
from collections import defaultdict, Counter, deque
from mlagents_envs.base_env import BatchedStepResult
from mlagents.trainers.trajectory import Trajectory, AgentExperience
from mlagents.trainers.tf_policy import TFPolicy
from mlagents.trainers.policy import Policy
from mlagents.trainers.action_info import ActionInfo, ActionInfoOutputs
from mlagents.trainers.stats import StatsReporter
from mlagents.trainers.brain_conversion_utils import get_global_agent_id
T = TypeVar("T")
class AgentProcessor:
"""
AgentProcessor contains a dictionary per-agent trajectory buffers. The buffers are indexed by agent_id.
Buffer also contains an update_buffer that corresponds to the buffer used when updating the model.
One AgentProcessor should be created per agent group.
"""
def __init__(
self,
policy: TFPolicy,
behavior_id: str,
stats_reporter: StatsReporter,
max_trajectory_length: int = sys.maxsize,
):
"""
Create an AgentProcessor.
:param trainer: Trainer instance connected to this AgentProcessor. Trainer is given trajectory
when it is finished.
:param policy: Policy instance associated with this AgentProcessor.
:param max_trajectory_length: Maximum length of a trajectory before it is added to the trainer.
:param stats_category: The category under which to write the stats. Usually, this comes from the Trainer.
"""
self.experience_buffers: Dict[str, List[AgentExperience]] = defaultdict(list)
self.last_step_result: Dict[str, BatchedStepResult] = {}
# last_take_action_outputs stores the action a_t taken before the current observation s_(t+1), while
# grabbing previous_action from the policy grabs the action PRIOR to that, a_(t-1).
self.last_take_action_outputs: Dict[str, ActionInfoOutputs] = {}
# Note: In the future this policy reference will be the policy of the env_manager and not the trainer.
# We can in that case just grab the action from the policy rather than having it passed in.
self.policy = policy
self.episode_steps: Counter = Counter()
self.episode_rewards: Dict[str, float] = defaultdict(float)
self.stats_reporter = stats_reporter
self.max_trajectory_length = max_trajectory_length
self.trajectory_queues: List[AgentManagerQueue[Trajectory]] = []
self.behavior_id = behavior_id
def add_experiences(
self,
batched_step_result: BatchedStepResult,
worker_id: int,
previous_action: ActionInfo,
) -> None:
"""
Adds experiences to each agent's experience history.
:param batched_step_result: current BatchedStepResult.
:param previous_action: The outputs of the Policy's get_action method.
"""
take_action_outputs = previous_action.outputs
if take_action_outputs:
for _entropy in take_action_outputs["entropy"]:
self.stats_reporter.add_stat("Policy/Entropy", _entropy)
self.stats_reporter.add_stat(
"Policy/Learning Rate", take_action_outputs["learning_rate"]
)
# Make unique agent_ids that are global across workers
action_global_agent_ids = [
get_global_agent_id(worker_id, ag_id) for ag_id in previous_action.agent_ids
]
for global_id in action_global_agent_ids:
self.last_take_action_outputs[global_id] = take_action_outputs
for _id in batched_step_result.agent_id: # Assume agent_id is 1-D
local_id = int(
_id
) # Needed for mypy to pass since ndarray has no content type
curr_agent_step = batched_step_result.get_agent_step_result(local_id)
global_id = get_global_agent_id(worker_id, local_id)
stored_step = self.last_step_result.get(global_id, None)
stored_take_action_outputs = self.last_take_action_outputs.get(
global_id, None
)
if stored_step is not None and stored_take_action_outputs is not None:
# We know the step is from the same worker, so use the local agent id.
stored_agent_step = stored_step.get_agent_step_result(local_id)
idx = stored_step.agent_id_to_index[local_id]
obs = stored_agent_step.obs
if not stored_agent_step.done:
if self.policy.use_recurrent:
memory = self.policy.retrieve_memories([global_id])[0, :]
else:
memory = None
done = curr_agent_step.done
max_step = curr_agent_step.max_step
# Add the outputs of the last eval
action = stored_take_action_outputs["action"][idx]
if self.policy.use_continuous_act:
action_pre = stored_take_action_outputs["pre_action"][idx]
else:
action_pre = None
action_probs = stored_take_action_outputs["log_probs"][idx]
action_mask = stored_agent_step.action_mask
prev_action = self.policy.retrieve_previous_action([global_id])[
0, :
]
experience = AgentExperience(
obs=obs,
reward=curr_agent_step.reward,
done=done,
action=action,
action_probs=action_probs,
action_pre=action_pre,
action_mask=action_mask,
prev_action=prev_action,
max_step=max_step,
memory=memory,
)
# Add the value outputs if needed
self.experience_buffers[global_id].append(experience)
self.episode_rewards[global_id] += curr_agent_step.reward
if (
curr_agent_step.done
or (
len(self.experience_buffers[global_id])
>= self.max_trajectory_length
)
) and len(self.experience_buffers[global_id]) > 0:
# Make next AgentExperience
next_obs = curr_agent_step.obs
trajectory = Trajectory(
steps=self.experience_buffers[global_id],
agent_id=global_id,
next_obs=next_obs,
behavior_id=self.behavior_id,
)
for traj_queue in self.trajectory_queues:
traj_queue.put(trajectory)
self.experience_buffers[global_id] = []
if curr_agent_step.done:
self.stats_reporter.add_stat(
"Environment/Cumulative Reward",
self.episode_rewards.get(global_id, 0),
)
self.stats_reporter.add_stat(
"Environment/Episode Length",
self.episode_steps.get(global_id, 0),
)
del self.episode_steps[global_id]
del self.episode_rewards[global_id]
elif not curr_agent_step.done:
self.episode_steps[global_id] += 1
self.last_step_result[global_id] = batched_step_result
if "action" in take_action_outputs:
self.policy.save_previous_action(
previous_action.agent_ids, take_action_outputs["action"]
)
def publish_trajectory_queue(
self, trajectory_queue: "AgentManagerQueue[Trajectory]"
) -> None:
"""
Adds a trajectory queue to the list of queues to publish to when this AgentProcessor
assembles a Trajectory
:param trajectory_queue: Trajectory queue to publish to.
"""
self.trajectory_queues.append(trajectory_queue)
def end_episode(self) -> None:
"""
Ends the episode, terminating the current trajectory and stopping stats collection for that
episode. Used for forceful reset (e.g. in curriculum or generalization training.)
"""
self.experience_buffers.clear()
self.episode_rewards.clear()
self.episode_steps.clear()
class AgentManagerQueue(Generic[T]):
"""
Queue used by the AgentManager. Note that we make our own class here because in most implementations
deque is sufficient and faster. However, if we want to switch to multiprocessing, we'll need to change
out this implementation.
"""
class Empty(Exception):
"""
Exception for when the queue is empty.
"""
pass
def __init__(self, behavior_id: str, maxlen: int = 1000):
"""
Initializes an AgentManagerQueue. Note that we can give it a behavior_id so that it can be identified
separately from an AgentManager.
"""
self.maxlen: int = maxlen
self.queue: Deque[T] = deque(maxlen=self.maxlen)
self.behavior_id = behavior_id
def empty(self) -> bool:
return len(self.queue) == 0
def get_nowait(self) -> T:
try:
return self.queue.popleft()
except IndexError:
raise self.Empty("The AgentManagerQueue is empty.")
def put(self, item: T) -> None:
self.queue.append(item)
class AgentManager(AgentProcessor):
"""
An AgentManager is an AgentProcessor that also holds a single trajectory and policy queue.
Note: this leaves room for adding AgentProcessors that publish multiple trajectory queues.
"""
def __init__(
self,
policy: TFPolicy,
behavior_id: str,
stats_reporter: StatsReporter,
max_trajectory_length: int = sys.maxsize,
):
super().__init__(policy, behavior_id, stats_reporter, max_trajectory_length)
self.trajectory_queue: AgentManagerQueue[Trajectory] = AgentManagerQueue(
self.behavior_id
)
self.policy_queue: AgentManagerQueue[Policy] = AgentManagerQueue(
self.behavior_id
)
self.publish_trajectory_queue(self.trajectory_queue)