您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
245 行
10 KiB
245 行
10 KiB
import sys
|
|
from typing import List, Dict, Deque, TypeVar, Generic
|
|
from collections import defaultdict, Counter, deque
|
|
|
|
from mlagents_envs.base_env import BatchedStepResult
|
|
from mlagents.trainers.trajectory import Trajectory, AgentExperience
|
|
from mlagents.trainers.tf_policy import TFPolicy
|
|
from mlagents.trainers.policy import Policy
|
|
from mlagents.trainers.action_info import ActionInfo, ActionInfoOutputs
|
|
from mlagents.trainers.stats import StatsReporter
|
|
from mlagents.trainers.brain_conversion_utils import get_global_agent_id
|
|
|
|
T = TypeVar("T")
|
|
|
|
|
|
class AgentProcessor:
|
|
"""
|
|
AgentProcessor contains a dictionary per-agent trajectory buffers. The buffers are indexed by agent_id.
|
|
Buffer also contains an update_buffer that corresponds to the buffer used when updating the model.
|
|
One AgentProcessor should be created per agent group.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
policy: TFPolicy,
|
|
behavior_id: str,
|
|
stats_reporter: StatsReporter,
|
|
max_trajectory_length: int = sys.maxsize,
|
|
):
|
|
"""
|
|
Create an AgentProcessor.
|
|
:param trainer: Trainer instance connected to this AgentProcessor. Trainer is given trajectory
|
|
when it is finished.
|
|
:param policy: Policy instance associated with this AgentProcessor.
|
|
:param max_trajectory_length: Maximum length of a trajectory before it is added to the trainer.
|
|
:param stats_category: The category under which to write the stats. Usually, this comes from the Trainer.
|
|
"""
|
|
self.experience_buffers: Dict[str, List[AgentExperience]] = defaultdict(list)
|
|
self.last_step_result: Dict[str, BatchedStepResult] = {}
|
|
# last_take_action_outputs stores the action a_t taken before the current observation s_(t+1), while
|
|
# grabbing previous_action from the policy grabs the action PRIOR to that, a_(t-1).
|
|
self.last_take_action_outputs: Dict[str, ActionInfoOutputs] = {}
|
|
# Note: In the future this policy reference will be the policy of the env_manager and not the trainer.
|
|
# We can in that case just grab the action from the policy rather than having it passed in.
|
|
self.policy = policy
|
|
self.episode_steps: Counter = Counter()
|
|
self.episode_rewards: Dict[str, float] = defaultdict(float)
|
|
self.stats_reporter = stats_reporter
|
|
self.max_trajectory_length = max_trajectory_length
|
|
self.trajectory_queues: List[AgentManagerQueue[Trajectory]] = []
|
|
self.behavior_id = behavior_id
|
|
|
|
def add_experiences(
|
|
self,
|
|
batched_step_result: BatchedStepResult,
|
|
worker_id: int,
|
|
previous_action: ActionInfo,
|
|
) -> None:
|
|
"""
|
|
Adds experiences to each agent's experience history.
|
|
:param batched_step_result: current BatchedStepResult.
|
|
:param previous_action: The outputs of the Policy's get_action method.
|
|
"""
|
|
take_action_outputs = previous_action.outputs
|
|
if take_action_outputs:
|
|
for _entropy in take_action_outputs["entropy"]:
|
|
self.stats_reporter.add_stat("Policy/Entropy", _entropy)
|
|
self.stats_reporter.add_stat(
|
|
"Policy/Learning Rate", take_action_outputs["learning_rate"]
|
|
)
|
|
|
|
# Make unique agent_ids that are global across workers
|
|
action_global_agent_ids = [
|
|
get_global_agent_id(worker_id, ag_id) for ag_id in previous_action.agent_ids
|
|
]
|
|
for global_id in action_global_agent_ids:
|
|
self.last_take_action_outputs[global_id] = take_action_outputs
|
|
|
|
for _id in batched_step_result.agent_id: # Assume agent_id is 1-D
|
|
local_id = int(
|
|
_id
|
|
) # Needed for mypy to pass since ndarray has no content type
|
|
curr_agent_step = batched_step_result.get_agent_step_result(local_id)
|
|
global_id = get_global_agent_id(worker_id, local_id)
|
|
stored_step = self.last_step_result.get(global_id, None)
|
|
stored_take_action_outputs = self.last_take_action_outputs.get(
|
|
global_id, None
|
|
)
|
|
if stored_step is not None and stored_take_action_outputs is not None:
|
|
# We know the step is from the same worker, so use the local agent id.
|
|
stored_agent_step = stored_step.get_agent_step_result(local_id)
|
|
idx = stored_step.agent_id_to_index[local_id]
|
|
obs = stored_agent_step.obs
|
|
if not stored_agent_step.done:
|
|
if self.policy.use_recurrent:
|
|
memory = self.policy.retrieve_memories([global_id])[0, :]
|
|
else:
|
|
memory = None
|
|
|
|
done = curr_agent_step.done
|
|
max_step = curr_agent_step.max_step
|
|
|
|
# Add the outputs of the last eval
|
|
action = stored_take_action_outputs["action"][idx]
|
|
if self.policy.use_continuous_act:
|
|
action_pre = stored_take_action_outputs["pre_action"][idx]
|
|
else:
|
|
action_pre = None
|
|
action_probs = stored_take_action_outputs["log_probs"][idx]
|
|
action_mask = stored_agent_step.action_mask
|
|
prev_action = self.policy.retrieve_previous_action([global_id])[
|
|
0, :
|
|
]
|
|
|
|
experience = AgentExperience(
|
|
obs=obs,
|
|
reward=curr_agent_step.reward,
|
|
done=done,
|
|
action=action,
|
|
action_probs=action_probs,
|
|
action_pre=action_pre,
|
|
action_mask=action_mask,
|
|
prev_action=prev_action,
|
|
max_step=max_step,
|
|
memory=memory,
|
|
)
|
|
# Add the value outputs if needed
|
|
self.experience_buffers[global_id].append(experience)
|
|
self.episode_rewards[global_id] += curr_agent_step.reward
|
|
if (
|
|
curr_agent_step.done
|
|
or (
|
|
len(self.experience_buffers[global_id])
|
|
>= self.max_trajectory_length
|
|
)
|
|
) and len(self.experience_buffers[global_id]) > 0:
|
|
# Make next AgentExperience
|
|
next_obs = curr_agent_step.obs
|
|
trajectory = Trajectory(
|
|
steps=self.experience_buffers[global_id],
|
|
agent_id=global_id,
|
|
next_obs=next_obs,
|
|
behavior_id=self.behavior_id,
|
|
)
|
|
for traj_queue in self.trajectory_queues:
|
|
traj_queue.put(trajectory)
|
|
self.experience_buffers[global_id] = []
|
|
if curr_agent_step.done:
|
|
self.stats_reporter.add_stat(
|
|
"Environment/Cumulative Reward",
|
|
self.episode_rewards.get(global_id, 0),
|
|
)
|
|
self.stats_reporter.add_stat(
|
|
"Environment/Episode Length",
|
|
self.episode_steps.get(global_id, 0),
|
|
)
|
|
del self.episode_steps[global_id]
|
|
del self.episode_rewards[global_id]
|
|
elif not curr_agent_step.done:
|
|
self.episode_steps[global_id] += 1
|
|
|
|
self.last_step_result[global_id] = batched_step_result
|
|
|
|
if "action" in take_action_outputs:
|
|
self.policy.save_previous_action(
|
|
previous_action.agent_ids, take_action_outputs["action"]
|
|
)
|
|
|
|
def publish_trajectory_queue(
|
|
self, trajectory_queue: "AgentManagerQueue[Trajectory]"
|
|
) -> None:
|
|
"""
|
|
Adds a trajectory queue to the list of queues to publish to when this AgentProcessor
|
|
assembles a Trajectory
|
|
:param trajectory_queue: Trajectory queue to publish to.
|
|
"""
|
|
self.trajectory_queues.append(trajectory_queue)
|
|
|
|
def end_episode(self) -> None:
|
|
"""
|
|
Ends the episode, terminating the current trajectory and stopping stats collection for that
|
|
episode. Used for forceful reset (e.g. in curriculum or generalization training.)
|
|
"""
|
|
self.experience_buffers.clear()
|
|
self.episode_rewards.clear()
|
|
self.episode_steps.clear()
|
|
|
|
|
|
class AgentManagerQueue(Generic[T]):
|
|
"""
|
|
Queue used by the AgentManager. Note that we make our own class here because in most implementations
|
|
deque is sufficient and faster. However, if we want to switch to multiprocessing, we'll need to change
|
|
out this implementation.
|
|
"""
|
|
|
|
class Empty(Exception):
|
|
"""
|
|
Exception for when the queue is empty.
|
|
"""
|
|
|
|
pass
|
|
|
|
def __init__(self, behavior_id: str, maxlen: int = 1000):
|
|
"""
|
|
Initializes an AgentManagerQueue. Note that we can give it a behavior_id so that it can be identified
|
|
separately from an AgentManager.
|
|
"""
|
|
self.maxlen: int = maxlen
|
|
self.queue: Deque[T] = deque(maxlen=self.maxlen)
|
|
self.behavior_id = behavior_id
|
|
|
|
def empty(self) -> bool:
|
|
return len(self.queue) == 0
|
|
|
|
def get_nowait(self) -> T:
|
|
try:
|
|
return self.queue.popleft()
|
|
except IndexError:
|
|
raise self.Empty("The AgentManagerQueue is empty.")
|
|
|
|
def put(self, item: T) -> None:
|
|
self.queue.append(item)
|
|
|
|
|
|
class AgentManager(AgentProcessor):
|
|
"""
|
|
An AgentManager is an AgentProcessor that also holds a single trajectory and policy queue.
|
|
Note: this leaves room for adding AgentProcessors that publish multiple trajectory queues.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
policy: TFPolicy,
|
|
behavior_id: str,
|
|
stats_reporter: StatsReporter,
|
|
max_trajectory_length: int = sys.maxsize,
|
|
):
|
|
super().__init__(policy, behavior_id, stats_reporter, max_trajectory_length)
|
|
self.trajectory_queue: AgentManagerQueue[Trajectory] = AgentManagerQueue(
|
|
self.behavior_id
|
|
)
|
|
self.policy_queue: AgentManagerQueue[Policy] = AgentManagerQueue(
|
|
self.behavior_id
|
|
)
|
|
self.publish_trajectory_queue(self.trajectory_queue)
|