您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
155 行
5.6 KiB
155 行
5.6 KiB
import unittest.mock as mock
|
|
import pytest
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import yaml
|
|
|
|
from mlagents.trainers.bc.models import BehavioralCloningModel
|
|
from mlagents.trainers.bc.policy import BCPolicy
|
|
from mlagents.envs import UnityEnvironment
|
|
from mlagents.envs.mock_communicator import MockCommunicator
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
hidden_units: 128
|
|
learning_rate: 3.0e-4
|
|
num_layers: 2
|
|
use_recurrent: false
|
|
sequence_length: 32
|
|
memory_size: 32
|
|
"""
|
|
)
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_bc_policy_evaluate(mock_communicator, mock_launcher, dummy_config):
|
|
tf.reset_default_graph()
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
brain_infos = env.reset()
|
|
brain_info = brain_infos[env.brain_names[0]]
|
|
|
|
trainer_parameters = dummy_config
|
|
model_path = env.brain_names[0]
|
|
trainer_parameters["model_path"] = model_path
|
|
trainer_parameters["keep_checkpoints"] = 3
|
|
policy = BCPolicy(0, env.brains[env.brain_names[0]], trainer_parameters, False)
|
|
run_out = policy.evaluate(brain_info)
|
|
assert run_out["action"].shape == (3, 2)
|
|
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_cc_bc_model(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
model = BehavioralCloningModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.sample_action, model.policy]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_dc_bc_model(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=0
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
model = BehavioralCloningModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.sample_action, model.action_probs]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.dropout_rate: 1.0,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.action_masks: np.ones([2, 2]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_visual_dc_bc_model(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=True, visual_inputs=2
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
model = BehavioralCloningModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.sample_action, model.action_probs]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.dropout_rate: 1.0,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
model.action_masks: np.ones([2, 2]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
@mock.patch("mlagents.envs.UnityEnvironment.executable_launcher")
|
|
@mock.patch("mlagents.envs.UnityEnvironment.get_communicator")
|
|
def test_visual_cc_bc_model(mock_communicator, mock_launcher):
|
|
tf.reset_default_graph()
|
|
with tf.Session() as sess:
|
|
with tf.variable_scope("FakeGraphScope"):
|
|
mock_communicator.return_value = MockCommunicator(
|
|
discrete_action=False, visual_inputs=2
|
|
)
|
|
env = UnityEnvironment(" ")
|
|
model = BehavioralCloningModel(env.brains["RealFakeBrain"])
|
|
init = tf.global_variables_initializer()
|
|
sess.run(init)
|
|
|
|
run_list = [model.sample_action, model.policy]
|
|
feed_dict = {
|
|
model.batch_size: 2,
|
|
model.sequence_length: 1,
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], [3, 4, 5, 3, 4, 5]]),
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]),
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3]),
|
|
}
|
|
sess.run(run_list, feed_dict=feed_dict)
|
|
env.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|