Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

156 行
5.0 KiB

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
#if UNITY_EDITOR
using UnityEditor;
#endif
/// CoreBrain which decides actions using Player input.
public class CoreBrainPlayer : ScriptableObject, CoreBrain
{
[SerializeField]
private bool broadcast = true;
[System.Serializable]
private struct DiscretePlayerAction
{
public KeyCode key;
public int value;
}
[System.Serializable]
private struct ContinuousPlayerAction
{
public KeyCode key;
public int index;
public float value;
}
MLAgents.Batcher brainBatcher;
[SerializeField]
[Tooltip("The list of keys and the value they correspond to for continuous control.")]
/// Contains the mapping from input to continuous actions
private ContinuousPlayerAction[] continuousPlayerActions;
[SerializeField]
[Tooltip("The list of keys and the value they correspond to for discrete control.")]
/// Contains the mapping from input to discrete actions
private DiscretePlayerAction[] discretePlayerActions;
[SerializeField]
private int defaultAction = 0;
/// Reference to the brain that uses this CoreBrainPlayer
public Brain brain;
/// Create the reference to the brain
public void SetBrain(Brain b)
{
brain = b;
}
/// Nothing to implement
/// Nothing to implement
public void InitializeCoreBrain(MLAgents.Batcher brainBatcher)
{
if ((brainBatcher == null)
|| (!broadcast))
{
this.brainBatcher = null;
}
else
{
this.brainBatcher = brainBatcher;
this.brainBatcher.SubscribeBrain(brain.gameObject.name);
}
}
/// Uses the continuous inputs or dicrete inputs of the player to
/// decide action
public void DecideAction(Dictionary<Agent, AgentInfo> agentInfo)
{
if (brainBatcher != null)
{
brainBatcher.SendBrainInfo(brain.gameObject.name, agentInfo);
}
if (brain.brainParameters.vectorActionSpaceType == SpaceType.continuous)
{
foreach (Agent agent in agentInfo.Keys)
{
var action = new float[brain.brainParameters.vectorActionSize];
foreach (ContinuousPlayerAction cha in continuousPlayerActions)
{
if (Input.GetKey(cha.key))
{
action[cha.index] = cha.value;
}
}
agent.UpdateVectorAction(action);
}
}
else
{
foreach (Agent agent in agentInfo.Keys)
{
var action = new float[1] { defaultAction };
foreach (DiscretePlayerAction dha in discretePlayerActions)
{
if (Input.GetKey(dha.key))
{
action[0] = (float)dha.value;
break;
}
}
agent.UpdateVectorAction(action);
}
}
}
/// Displays continuous or discrete input mapping in the inspector
public void OnInspector()
{
#if UNITY_EDITOR
EditorGUILayout.LabelField("", GUI.skin.horizontalSlider);
broadcast = EditorGUILayout.Toggle(new GUIContent("Broadcast",
"If checked, the brain will broadcast states and actions to Python."), broadcast);
var serializedBrain = new SerializedObject(this);
if (brain.brainParameters.vectorActionSpaceType == SpaceType.continuous)
{
GUILayout.Label("Edit the continuous inputs for your actions", EditorStyles.boldLabel);
var chas = serializedBrain.FindProperty("continuousPlayerActions");
serializedBrain.Update();
EditorGUILayout.PropertyField(chas, true);
serializedBrain.ApplyModifiedProperties();
if (continuousPlayerActions == null)
{
continuousPlayerActions = new ContinuousPlayerAction[0];
}
foreach (ContinuousPlayerAction cha in continuousPlayerActions)
{
if (cha.index >= brain.brainParameters.vectorActionSize)
{
EditorGUILayout.HelpBox(string.Format("Key {0} is assigned to index {1} but the action size is only of size {2}"
, cha.key.ToString(), cha.index.ToString(), brain.brainParameters.vectorActionSize.ToString()), MessageType.Error);
}
}
}
else
{
GUILayout.Label("Edit the discrete inputs for your actions", EditorStyles.boldLabel);
defaultAction = EditorGUILayout.IntField("Default Action", defaultAction);
var dhas = serializedBrain.FindProperty("discretePlayerActions");
serializedBrain.Update();
EditorGUILayout.PropertyField(dhas, true);
serializedBrain.ApplyModifiedProperties();
}
#endif
}
}