Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

165 行
6.8 KiB

# # Unity ML-Agents Toolkit
from typing import Dict, List
from collections import defaultdict
import abc
import time
from mlagents.trainers.optimizer.tf_optimizer import TFOptimizer
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.trainer import Trainer
from mlagents.trainers.exception import UnityTrainerException
from mlagents.trainers.components.reward_signals import RewardSignalResult
from mlagents_envs.timers import hierarchical_timer
from mlagents.trainers.agent_processor import AgentManagerQueue
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.stats import StatsPropertyType
RewardSignalResults = Dict[str, RewardSignalResult]
class RLTrainer(Trainer): # pylint: disable=abstract-method
"""
This class is the base class for trainers that use Reward Signals.
"""
def __init__(self, *args, **kwargs):
super(RLTrainer, self).__init__(*args, **kwargs)
# Make sure we have at least one reward_signal
if not self.trainer_parameters["reward_signals"]:
raise UnityTrainerException(
"No reward signals were defined. At least one must be used with {}.".format(
self.__class__.__name__
)
)
# collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward
# used for reporting only. We always want to report the environment reward to Tensorboard, regardless
# of what reward signals are actually present.
self.cumulative_returns_since_policy_update: List[float] = []
self.collected_rewards: Dict[str, Dict[str, int]] = {
"environment": defaultdict(lambda: 0)
}
self.update_buffer: AgentBuffer = AgentBuffer()
self._stats_reporter.add_property(
StatsPropertyType.HYPERPARAMETERS, self.trainer_parameters
)
def end_episode(self) -> None:
"""
A signal that the Episode has ended. The buffer must be reset.
Get only called when the academy resets.
"""
for rewards in self.collected_rewards.values():
for agent_id in rewards:
rewards[agent_id] = 0
def _update_end_episode_stats(self, agent_id: str, optimizer: TFOptimizer) -> None:
for name, rewards in self.collected_rewards.items():
if name == "environment":
self.stats_reporter.add_stat(
"Environment/Cumulative Reward", rewards.get(agent_id, 0)
)
self.cumulative_returns_since_policy_update.append(
rewards.get(agent_id, 0)
)
self.reward_buffer.appendleft(rewards.get(agent_id, 0))
rewards[agent_id] = 0
else:
self.stats_reporter.add_stat(
optimizer.reward_signals[name].stat_name, rewards.get(agent_id, 0)
)
rewards[agent_id] = 0
def _clear_update_buffer(self) -> None:
"""
Clear the buffers that have been built up during inference.
"""
self.update_buffer.reset_agent()
@abc.abstractmethod
def _is_ready_update(self):
"""
Returns whether or not the trainer has enough elements to run update model
:return: A boolean corresponding to wether or not update_model() can be run
"""
return False
@abc.abstractmethod
def _update_policy(self) -> bool:
"""
Uses demonstration_buffer to update model.
:return: Whether or not the policy was updated.
"""
pass
def _increment_step(self, n_steps: int, name_behavior_id: str) -> None:
"""
Increment the step count of the trainer
:param n_steps: number of steps to increment the step count by
"""
self.step += n_steps
self.next_summary_step = self._get_next_summary_step()
p = self.get_policy(name_behavior_id)
if p:
p.increment_step(n_steps)
def _get_next_summary_step(self) -> int:
"""
Get the next step count that should result in a summary write.
"""
return self.step + (self.summary_freq - self.step % self.summary_freq)
def _write_summary(self, step: int) -> None:
"""
Saves training statistics to Tensorboard.
"""
self.stats_reporter.add_stat("Is Training", float(self.should_still_train))
self.stats_reporter.write_stats(int(step))
@abc.abstractmethod
def _process_trajectory(self, trajectory: Trajectory) -> None:
"""
Takes a trajectory and processes it, putting it into the update buffer.
:param trajectory: The Trajectory tuple containing the steps to be processed.
"""
self._maybe_write_summary(self.get_step + len(trajectory.steps))
self._increment_step(len(trajectory.steps), trajectory.behavior_id)
def _maybe_write_summary(self, step_after_process: int) -> None:
"""
If processing the trajectory will make the step exceed the next summary write,
write the summary. This logic ensures summaries are written on the update step and not in between.
:param step_after_process: the step count after processing the next trajectory.
"""
if step_after_process >= self.next_summary_step and self.get_step != 0:
self._write_summary(self.next_summary_step)
def advance(self) -> None:
"""
Steps the trainer, taking in trajectories and updates if ready.
Will block and wait briefly if there are no trajectories.
"""
with hierarchical_timer("process_trajectory"):
for traj_queue in self.trajectory_queues:
# We grab at most the maximum length of the queue.
# This ensures that even if the queue is being filled faster than it is
# being emptied, the trajectories in the queue are on-policy.
_queried = False
for _ in range(traj_queue.qsize()):
_queried = True
try:
t = traj_queue.get_nowait()
self._process_trajectory(t)
except AgentManagerQueue.Empty:
break
if self.threaded and not _queried:
# Avoid busy-waiting
time.sleep(0.0001)
if self.should_still_train:
if self._is_ready_update():
with hierarchical_timer("_update_policy"):
if self._update_policy():
for q in self.policy_queues:
# Get policies that correspond to the policy queue in question
q.put(self.get_policy(q.behavior_id))
else:
self._clear_update_buffer()