您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
127 行
4.5 KiB
127 行
4.5 KiB
import threading
|
|
from mlagents.torch_utils import torch
|
|
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents.trainers.settings import SerializationSettings
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class exporting_to_onnx:
|
|
"""
|
|
Set this context by calling
|
|
```
|
|
with exporting_to_onnx():
|
|
```
|
|
Within this context, the variable exporting_to_onnx.is_exporting() will be true.
|
|
This implementation is thread safe.
|
|
"""
|
|
|
|
# local is_exporting flag for each thread
|
|
_local_data = threading.local()
|
|
_local_data._is_exporting = False
|
|
|
|
# global lock shared among all threads, to make sure only one thread is exporting at a time
|
|
_lock = threading.Lock()
|
|
|
|
def __enter__(self):
|
|
self._lock.acquire()
|
|
self._local_data._is_exporting = True
|
|
|
|
def __exit__(self, *args):
|
|
self._local_data._is_exporting = False
|
|
self._lock.release()
|
|
|
|
@staticmethod
|
|
def is_exporting():
|
|
if not hasattr(exporting_to_onnx._local_data, "_is_exporting"):
|
|
return False
|
|
return exporting_to_onnx._local_data._is_exporting
|
|
|
|
|
|
class ModelSerializer:
|
|
def __init__(self, policy):
|
|
# ONNX only support input in NCHW (channel first) format.
|
|
# Barracuda also expect to get data in NCHW.
|
|
# Any multi-dimentional input should follow that otherwise will
|
|
# cause problem to barracuda import.
|
|
self.policy = policy
|
|
batch_dim = [1]
|
|
seq_len_dim = [1]
|
|
vec_obs_size = 0
|
|
for sens_spec in self.policy.behavior_spec.sensor_specs:
|
|
if len(sens_spec.shape) == 1:
|
|
vec_obs_size += sens_spec.shape[0]
|
|
num_vis_obs = sum(
|
|
1
|
|
for sens_spec in self.policy.behavior_spec.sensor_specs
|
|
if len(sens_spec.shape) == 3
|
|
)
|
|
dummy_vec_obs = [torch.zeros(batch_dim + [vec_obs_size])]
|
|
# create input shape of NCHW
|
|
# (It's NHWC in self.policy.behavior_spec.sensor_specs.shape)
|
|
dummy_vis_obs = [
|
|
torch.zeros(
|
|
batch_dim + [sen_spec.shape[2], sen_spec.shape[0], sen_spec.shape[1]]
|
|
)
|
|
for sen_spec in self.policy.behavior_spec.sensor_specs
|
|
if len(sen_spec.shape) == 3
|
|
]
|
|
dummy_masks = torch.ones(
|
|
batch_dim + [sum(self.policy.behavior_spec.action_spec.discrete_branches)]
|
|
)
|
|
dummy_memories = torch.zeros(
|
|
batch_dim + seq_len_dim + [self.policy.export_memory_size]
|
|
)
|
|
|
|
self.dummy_input = (dummy_vec_obs, dummy_vis_obs, dummy_masks, dummy_memories)
|
|
|
|
self.input_names = (
|
|
["vector_observation"]
|
|
+ [f"visual_observation_{i}" for i in range(num_vis_obs)]
|
|
+ ["action_masks", "memories"]
|
|
)
|
|
self.dynamic_axes = {name: {0: "batch"} for name in self.input_names}
|
|
|
|
self.output_names = ["version_number", "memory_size"]
|
|
if self.policy.behavior_spec.action_spec.continuous_size > 0:
|
|
self.output_names += [
|
|
"continuous_actions",
|
|
"continuous_action_output_shape",
|
|
]
|
|
self.dynamic_axes.update({"continuous_actions": {0: "batch"}})
|
|
if self.policy.behavior_spec.action_spec.discrete_size > 0:
|
|
self.output_names += ["discrete_actions", "discrete_action_output_shape"]
|
|
self.dynamic_axes.update({"discrete_actions": {0: "batch"}})
|
|
if (
|
|
self.policy.behavior_spec.action_spec.continuous_size == 0
|
|
or self.policy.behavior_spec.action_spec.discrete_size == 0
|
|
):
|
|
self.output_names += [
|
|
"action",
|
|
"is_continuous_control",
|
|
"action_output_shape",
|
|
]
|
|
self.dynamic_axes.update({"action": {0: "batch"}})
|
|
|
|
def export_policy_model(self, output_filepath: str) -> None:
|
|
"""
|
|
Exports a Torch model for a Policy to .onnx format for Unity embedding.
|
|
|
|
:param output_filepath: file path to output the model (without file suffix)
|
|
"""
|
|
onnx_output_path = f"{output_filepath}.onnx"
|
|
logger.info(f"Converting to {onnx_output_path}")
|
|
|
|
with exporting_to_onnx():
|
|
torch.onnx.export(
|
|
self.policy.actor_critic,
|
|
self.dummy_input,
|
|
onnx_output_path,
|
|
opset_version=SerializationSettings.onnx_opset,
|
|
input_names=self.input_names,
|
|
output_names=self.output_names,
|
|
dynamic_axes=self.dynamic_axes,
|
|
)
|
|
logger.info(f"Exported {onnx_output_path}")
|