Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

82 行
3.4 KiB

import logging
from typing import Any, Dict, List
from collections import namedtuple
import numpy as np
import abc
from mlagents.tf_utils import tf
from mlagents.trainers.exception import UnityTrainerException
from mlagents.trainers.policy.tf_policy import TFPolicy
logger = logging.getLogger("mlagents.trainers")
RewardSignalResult = namedtuple(
"RewardSignalResult", ["scaled_reward", "unscaled_reward"]
)
class RewardSignal(abc.ABC):
def __init__(self, policy: TFPolicy, strength: float, gamma: float):
"""
Initializes a reward signal. At minimum, you must pass in the policy it is being applied to,
the reward strength, and the gamma (discount factor.)
:param policy: The Policy object (e.g. NNPolicy) that this Reward Signal will apply to.
:param strength: The strength of the reward. The reward's raw value will be multiplied by this value.
:param gamma: The time discounting factor used for this reward.
:return: A RewardSignal object.
"""
class_name = self.__class__.__name__
short_name = class_name.replace("RewardSignal", "")
self.stat_name = f"Policy/{short_name} Reward"
self.value_name = f"Policy/{short_name} Value Estimate"
# Terminate discounted reward computation at Done. Can disable to mitigate positive bias in rewards with
# no natural end, e.g. GAIL or Curiosity
self.use_terminal_states = True
self.update_dict: Dict[str, tf.Tensor] = {}
self.gamma = gamma
self.policy = policy
self.strength = strength
self.stats_name_to_update_name: Dict[str, str] = {}
def evaluate_batch(self, mini_batch: Dict[str, np.array]) -> RewardSignalResult:
"""
Evaluates the reward for the data present in the Dict mini_batch. Use this when evaluating a reward
function drawn straight from a Buffer.
:param mini_batch: A Dict of numpy arrays (the format used by our Buffer)
when drawing from the update buffer.
:return: a RewardSignalResult of (scaled intrinsic reward, unscaled intrinsic reward) provided by the generator
"""
mini_batch_len = len(next(iter(mini_batch.values())))
return RewardSignalResult(
self.strength * np.zeros(mini_batch_len, dtype=np.float32),
np.zeros(mini_batch_len, dtype=np.float32),
)
def prepare_update(
self, policy: TFPolicy, mini_batch: Dict[str, np.ndarray], num_sequences: int
) -> Dict[tf.Tensor, Any]:
"""
If the reward signal has an internal model (e.g. GAIL or Curiosity), get the feed_dict
needed to update the buffer..
:param update_buffer: An AgentBuffer that contains the live data from which to update.
:param n_sequences: The number of sequences in the training buffer.
:return: A dict that corresponds to the feed_dict needed for the update.
"""
return {}
@classmethod
def check_config(
cls, config_dict: Dict[str, Any], param_keys: List[str] = None
) -> None:
"""
Check the config dict, and throw an error if there are missing hyperparameters.
"""
param_keys = param_keys or []
for k in param_keys:
if k not in config_dict:
raise UnityTrainerException(
"The hyper-parameter {0} could not be found for {1}.".format(
k, cls.__name__
)
)