您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
567 行
22 KiB
567 行
22 KiB
import numpy as np
|
|
from typing import Dict, List, Mapping, cast, Tuple, Optional
|
|
from mlagents.torch_utils import torch, nn, default_device
|
|
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents_envs.base_env import ActionSpec
|
|
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
|
|
from mlagents.trainers.policy.torch_policy import TorchPolicy
|
|
from mlagents.trainers.settings import NetworkSettings
|
|
from mlagents.trainers.torch.networks import ValueNetwork
|
|
from mlagents.trainers.torch.utils import ModelUtils
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
from mlagents_envs.timers import timed
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
from mlagents.trainers.settings import TrainerSettings, SACSettings
|
|
from contextlib import ExitStack
|
|
|
|
EPSILON = 1e-6 # Small value to avoid divide by zero
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class TorchSACOptimizer(TorchOptimizer):
|
|
class PolicyValueNetwork(nn.Module):
|
|
def __init__(
|
|
self,
|
|
stream_names: List[str],
|
|
observation_shapes: List[Tuple[int, ...]],
|
|
network_settings: NetworkSettings,
|
|
action_spec: ActionSpec,
|
|
):
|
|
super().__init__()
|
|
self.action_spec = action_spec
|
|
if self.action_spec.is_continuous():
|
|
self.act_size = self.action_spec.continuous_size
|
|
num_value_outs = 1
|
|
num_action_ins = self.act_size
|
|
|
|
else:
|
|
self.act_size = self.action_spec.discrete_branches
|
|
num_value_outs = sum(self.act_size)
|
|
num_action_ins = 0
|
|
self.q1_network = ValueNetwork(
|
|
stream_names,
|
|
observation_shapes,
|
|
network_settings,
|
|
num_action_ins,
|
|
num_value_outs,
|
|
)
|
|
self.q2_network = ValueNetwork(
|
|
stream_names,
|
|
observation_shapes,
|
|
network_settings,
|
|
num_action_ins,
|
|
num_value_outs,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
net_inputs: List[torch.Tensor],
|
|
actions: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
q1_grad: bool = True,
|
|
q2_grad: bool = True,
|
|
) -> Tuple[Dict[str, torch.Tensor], Dict[str, torch.Tensor]]:
|
|
"""
|
|
Performs a forward pass on the value network, which consists of a Q1 and Q2
|
|
network. Optionally does not evaluate gradients for either the Q1, Q2, or both.
|
|
:param net_inputs: List of observation tensors.
|
|
:param actions: For a continuous Q function (has actions), tensor of actions.
|
|
Otherwise, None.
|
|
:param memories: Initial memories if using memory. Otherwise, None.
|
|
:param sequence_length: Sequence length if using memory.
|
|
:param q1_grad: Whether or not to compute gradients for the Q1 network.
|
|
:param q2_grad: Whether or not to compute gradients for the Q2 network.
|
|
:return: Tuple of two dictionaries, which both map {reward_signal: Q} for Q1 and Q2,
|
|
respectively.
|
|
"""
|
|
# ExitStack allows us to enter the torch.no_grad() context conditionally
|
|
with ExitStack() as stack:
|
|
if not q1_grad:
|
|
stack.enter_context(torch.no_grad())
|
|
q1_out, _ = self.q1_network(
|
|
net_inputs,
|
|
actions=actions,
|
|
memories=memories,
|
|
sequence_length=sequence_length,
|
|
)
|
|
with ExitStack() as stack:
|
|
if not q2_grad:
|
|
stack.enter_context(torch.no_grad())
|
|
q2_out, _ = self.q2_network(
|
|
net_inputs,
|
|
actions=actions,
|
|
memories=memories,
|
|
sequence_length=sequence_length,
|
|
)
|
|
return q1_out, q2_out
|
|
|
|
def __init__(self, policy: TorchPolicy, trainer_params: TrainerSettings):
|
|
super().__init__(policy, trainer_params)
|
|
hyperparameters: SACSettings = cast(SACSettings, trainer_params.hyperparameters)
|
|
self.tau = hyperparameters.tau
|
|
self.init_entcoef = hyperparameters.init_entcoef
|
|
|
|
self.policy = policy
|
|
self.act_size = policy.act_size
|
|
policy_network_settings = policy.network_settings
|
|
|
|
self.tau = hyperparameters.tau
|
|
self.burn_in_ratio = 0.0
|
|
|
|
# Non-exposed SAC parameters
|
|
self.discrete_target_entropy_scale = 0.2 # Roughly equal to e-greedy 0.05
|
|
self.continuous_target_entropy_scale = 1.0
|
|
|
|
self.stream_names = list(self.reward_signals.keys())
|
|
# Use to reduce "survivor bonus" when using Curiosity or GAIL.
|
|
self.gammas = [_val.gamma for _val in trainer_params.reward_signals.values()]
|
|
self.use_dones_in_backup = {
|
|
name: int(not self.reward_signals[name].ignore_done)
|
|
for name in self.stream_names
|
|
}
|
|
|
|
self.value_network = TorchSACOptimizer.PolicyValueNetwork(
|
|
self.stream_names,
|
|
self.policy.behavior_spec.observation_shapes,
|
|
policy_network_settings,
|
|
self.policy.behavior_spec.action_spec,
|
|
)
|
|
|
|
self.target_network = ValueNetwork(
|
|
self.stream_names,
|
|
self.policy.behavior_spec.observation_shapes,
|
|
policy_network_settings,
|
|
)
|
|
ModelUtils.soft_update(
|
|
self.policy.actor_critic.critic, self.target_network, 1.0
|
|
)
|
|
|
|
self._log_ent_coef = torch.nn.Parameter(
|
|
torch.log(torch.as_tensor([self.init_entcoef] * len(self.act_size))),
|
|
requires_grad=True,
|
|
)
|
|
if self.policy.use_continuous_act:
|
|
self.target_entropy = torch.as_tensor(
|
|
-1
|
|
* self.continuous_target_entropy_scale
|
|
* np.prod(self.act_size[0]).astype(np.float32)
|
|
)
|
|
else:
|
|
self.target_entropy = [
|
|
self.discrete_target_entropy_scale * np.log(i).astype(np.float32)
|
|
for i in self.act_size
|
|
]
|
|
|
|
policy_params = list(self.policy.actor_critic.network_body.parameters()) + list(
|
|
self.policy.actor_critic.distribution.parameters()
|
|
)
|
|
value_params = list(self.value_network.parameters()) + list(
|
|
self.policy.actor_critic.critic.parameters()
|
|
)
|
|
|
|
logger.debug("value_vars")
|
|
for param in value_params:
|
|
logger.debug(param.shape)
|
|
logger.debug("policy_vars")
|
|
for param in policy_params:
|
|
logger.debug(param.shape)
|
|
|
|
self.decay_learning_rate = ModelUtils.DecayedValue(
|
|
hyperparameters.learning_rate_schedule,
|
|
hyperparameters.learning_rate,
|
|
1e-10,
|
|
self.trainer_settings.max_steps,
|
|
)
|
|
self.policy_optimizer = torch.optim.Adam(
|
|
policy_params, lr=hyperparameters.learning_rate
|
|
)
|
|
self.value_optimizer = torch.optim.Adam(
|
|
value_params, lr=hyperparameters.learning_rate
|
|
)
|
|
self.entropy_optimizer = torch.optim.Adam(
|
|
[self._log_ent_coef], lr=hyperparameters.learning_rate
|
|
)
|
|
self._move_to_device(default_device())
|
|
|
|
def _move_to_device(self, device: torch.device) -> None:
|
|
self._log_ent_coef.to(device)
|
|
self.target_network.to(device)
|
|
self.value_network.to(device)
|
|
|
|
def sac_q_loss(
|
|
self,
|
|
q1_out: Dict[str, torch.Tensor],
|
|
q2_out: Dict[str, torch.Tensor],
|
|
target_values: Dict[str, torch.Tensor],
|
|
dones: torch.Tensor,
|
|
rewards: Dict[str, torch.Tensor],
|
|
loss_masks: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
q1_losses = []
|
|
q2_losses = []
|
|
# Multiple q losses per stream
|
|
for i, name in enumerate(q1_out.keys()):
|
|
q1_stream = q1_out[name].squeeze()
|
|
q2_stream = q2_out[name].squeeze()
|
|
with torch.no_grad():
|
|
q_backup = rewards[name] + (
|
|
(1.0 - self.use_dones_in_backup[name] * dones)
|
|
* self.gammas[i]
|
|
* target_values[name]
|
|
)
|
|
_q1_loss = 0.5 * ModelUtils.masked_mean(
|
|
torch.nn.functional.mse_loss(q_backup, q1_stream), loss_masks
|
|
)
|
|
_q2_loss = 0.5 * ModelUtils.masked_mean(
|
|
torch.nn.functional.mse_loss(q_backup, q2_stream), loss_masks
|
|
)
|
|
|
|
q1_losses.append(_q1_loss)
|
|
q2_losses.append(_q2_loss)
|
|
q1_loss = torch.mean(torch.stack(q1_losses))
|
|
q2_loss = torch.mean(torch.stack(q2_losses))
|
|
return q1_loss, q2_loss
|
|
|
|
def sac_value_loss(
|
|
self,
|
|
log_probs: torch.Tensor,
|
|
values: Dict[str, torch.Tensor],
|
|
q1p_out: Dict[str, torch.Tensor],
|
|
q2p_out: Dict[str, torch.Tensor],
|
|
loss_masks: torch.Tensor,
|
|
discrete: bool,
|
|
) -> torch.Tensor:
|
|
min_policy_qs = {}
|
|
with torch.no_grad():
|
|
_ent_coef = torch.exp(self._log_ent_coef)
|
|
for name in values.keys():
|
|
if not discrete:
|
|
min_policy_qs[name] = torch.min(q1p_out[name], q2p_out[name])
|
|
else:
|
|
action_probs = log_probs.exp()
|
|
_branched_q1p = ModelUtils.break_into_branches(
|
|
q1p_out[name] * action_probs, self.act_size
|
|
)
|
|
_branched_q2p = ModelUtils.break_into_branches(
|
|
q2p_out[name] * action_probs, self.act_size
|
|
)
|
|
_q1p_mean = torch.mean(
|
|
torch.stack(
|
|
[
|
|
torch.sum(_br, dim=1, keepdim=True)
|
|
for _br in _branched_q1p
|
|
]
|
|
),
|
|
dim=0,
|
|
)
|
|
_q2p_mean = torch.mean(
|
|
torch.stack(
|
|
[
|
|
torch.sum(_br, dim=1, keepdim=True)
|
|
for _br in _branched_q2p
|
|
]
|
|
),
|
|
dim=0,
|
|
)
|
|
|
|
min_policy_qs[name] = torch.min(_q1p_mean, _q2p_mean)
|
|
|
|
value_losses = []
|
|
if not discrete:
|
|
for name in values.keys():
|
|
with torch.no_grad():
|
|
v_backup = min_policy_qs[name] - torch.sum(
|
|
_ent_coef * log_probs, dim=1
|
|
)
|
|
value_loss = 0.5 * ModelUtils.masked_mean(
|
|
torch.nn.functional.mse_loss(values[name], v_backup), loss_masks
|
|
)
|
|
value_losses.append(value_loss)
|
|
else:
|
|
branched_per_action_ent = ModelUtils.break_into_branches(
|
|
log_probs * log_probs.exp(), self.act_size
|
|
)
|
|
# We have to do entropy bonus per action branch
|
|
branched_ent_bonus = torch.stack(
|
|
[
|
|
torch.sum(_ent_coef[i] * _lp, dim=1, keepdim=True)
|
|
for i, _lp in enumerate(branched_per_action_ent)
|
|
]
|
|
)
|
|
for name in values.keys():
|
|
with torch.no_grad():
|
|
v_backup = min_policy_qs[name] - torch.mean(
|
|
branched_ent_bonus, axis=0
|
|
)
|
|
value_loss = 0.5 * ModelUtils.masked_mean(
|
|
torch.nn.functional.mse_loss(values[name], v_backup.squeeze()),
|
|
loss_masks,
|
|
)
|
|
value_losses.append(value_loss)
|
|
value_loss = torch.mean(torch.stack(value_losses))
|
|
if torch.isinf(value_loss).any() or torch.isnan(value_loss).any():
|
|
raise UnityTrainerException("Inf found")
|
|
return value_loss
|
|
|
|
def sac_policy_loss(
|
|
self,
|
|
log_probs: torch.Tensor,
|
|
q1p_outs: Dict[str, torch.Tensor],
|
|
loss_masks: torch.Tensor,
|
|
discrete: bool,
|
|
) -> torch.Tensor:
|
|
_ent_coef = torch.exp(self._log_ent_coef)
|
|
mean_q1 = torch.mean(torch.stack(list(q1p_outs.values())), axis=0)
|
|
if not discrete:
|
|
mean_q1 = mean_q1.unsqueeze(1)
|
|
batch_policy_loss = torch.mean(_ent_coef * log_probs - mean_q1, dim=1)
|
|
policy_loss = ModelUtils.masked_mean(batch_policy_loss, loss_masks)
|
|
else:
|
|
action_probs = log_probs.exp()
|
|
branched_per_action_ent = ModelUtils.break_into_branches(
|
|
log_probs * action_probs, self.act_size
|
|
)
|
|
branched_q_term = ModelUtils.break_into_branches(
|
|
mean_q1 * action_probs, self.act_size
|
|
)
|
|
branched_policy_loss = torch.stack(
|
|
[
|
|
torch.sum(_ent_coef[i] * _lp - _qt, dim=1, keepdim=True)
|
|
for i, (_lp, _qt) in enumerate(
|
|
zip(branched_per_action_ent, branched_q_term)
|
|
)
|
|
],
|
|
dim=1,
|
|
)
|
|
batch_policy_loss = torch.squeeze(branched_policy_loss)
|
|
policy_loss = ModelUtils.masked_mean(batch_policy_loss, loss_masks)
|
|
return policy_loss
|
|
|
|
def sac_entropy_loss(
|
|
self, log_probs: torch.Tensor, loss_masks: torch.Tensor, discrete: bool
|
|
) -> torch.Tensor:
|
|
if not discrete:
|
|
with torch.no_grad():
|
|
target_current_diff = torch.sum(log_probs + self.target_entropy, dim=1)
|
|
entropy_loss = -1 * ModelUtils.masked_mean(
|
|
self._log_ent_coef * target_current_diff, loss_masks
|
|
)
|
|
else:
|
|
with torch.no_grad():
|
|
branched_per_action_ent = ModelUtils.break_into_branches(
|
|
log_probs * log_probs.exp(), self.act_size
|
|
)
|
|
target_current_diff_branched = torch.stack(
|
|
[
|
|
torch.sum(_lp, axis=1, keepdim=True) + _te
|
|
for _lp, _te in zip(
|
|
branched_per_action_ent, self.target_entropy
|
|
)
|
|
],
|
|
axis=1,
|
|
)
|
|
target_current_diff = torch.squeeze(
|
|
target_current_diff_branched, axis=2
|
|
)
|
|
entropy_loss = -1 * ModelUtils.masked_mean(
|
|
torch.mean(self._log_ent_coef * target_current_diff, axis=1), loss_masks
|
|
)
|
|
|
|
return entropy_loss
|
|
|
|
def _condense_q_streams(
|
|
self, q_output: Dict[str, torch.Tensor], discrete_actions: torch.Tensor
|
|
) -> Dict[str, torch.Tensor]:
|
|
condensed_q_output = {}
|
|
onehot_actions = ModelUtils.actions_to_onehot(discrete_actions, self.act_size)
|
|
for key, item in q_output.items():
|
|
branched_q = ModelUtils.break_into_branches(item, self.act_size)
|
|
only_action_qs = torch.stack(
|
|
[
|
|
torch.sum(_act * _q, dim=1, keepdim=True)
|
|
for _act, _q in zip(onehot_actions, branched_q)
|
|
]
|
|
)
|
|
|
|
condensed_q_output[key] = torch.mean(only_action_qs, dim=0)
|
|
return condensed_q_output
|
|
|
|
@timed
|
|
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
|
|
"""
|
|
Updates model using buffer.
|
|
:param num_sequences: Number of trajectories in batch.
|
|
:param batch: Experience mini-batch.
|
|
:param update_target: Whether or not to update target value network
|
|
:param reward_signal_batches: Minibatches to use for updating the reward signals,
|
|
indexed by name. If none, don't update the reward signals.
|
|
:return: Output from update process.
|
|
"""
|
|
rewards = {}
|
|
for name in self.reward_signals:
|
|
rewards[name] = ModelUtils.list_to_tensor(batch[f"{name}_rewards"])
|
|
|
|
obs = ModelUtils.list_to_tensor_list(
|
|
AgentBuffer.obs_list_to_obs_batch(batch["obs"])
|
|
)
|
|
next_obs = ModelUtils.list_to_tensor_list(
|
|
AgentBuffer.obs_list_to_obs_batch(batch["next_obs"])
|
|
)
|
|
act_masks = ModelUtils.list_to_tensor(batch["action_mask"])
|
|
if self.policy.use_continuous_act:
|
|
actions = ModelUtils.list_to_tensor(batch["actions"]).unsqueeze(-1)
|
|
else:
|
|
actions = ModelUtils.list_to_tensor(batch["actions"], dtype=torch.long)
|
|
|
|
memories_list = [
|
|
ModelUtils.list_to_tensor(batch["memory"][i])
|
|
for i in range(0, len(batch["memory"]), self.policy.sequence_length)
|
|
]
|
|
# LSTM shouldn't have sequence length <1, but stop it from going out of the index if true.
|
|
offset = 1 if self.policy.sequence_length > 1 else 0
|
|
next_memories_list = [
|
|
ModelUtils.list_to_tensor(
|
|
batch["memory"][i][self.policy.m_size // 2 :]
|
|
) # only pass value part of memory to target network
|
|
for i in range(offset, len(batch["memory"]), self.policy.sequence_length)
|
|
]
|
|
|
|
if len(memories_list) > 0:
|
|
memories = torch.stack(memories_list).unsqueeze(0)
|
|
next_memories = torch.stack(next_memories_list).unsqueeze(0)
|
|
else:
|
|
memories = None
|
|
next_memories = None
|
|
# Q network memories are 0'ed out, since we don't have them during inference.
|
|
q_memories = (
|
|
torch.zeros_like(next_memories) if next_memories is not None else None
|
|
)
|
|
|
|
# Copy normalizers from policy
|
|
self.value_network.q1_network.network_body.copy_normalization(
|
|
self.policy.actor_critic.network_body
|
|
)
|
|
self.value_network.q2_network.network_body.copy_normalization(
|
|
self.policy.actor_critic.network_body
|
|
)
|
|
self.target_network.network_body.copy_normalization(
|
|
self.policy.actor_critic.network_body
|
|
)
|
|
(sampled_actions, _, log_probs, _, _) = self.policy.sample_actions(
|
|
obs,
|
|
masks=act_masks,
|
|
memories=memories,
|
|
seq_len=self.policy.sequence_length,
|
|
all_log_probs=not self.policy.use_continuous_act,
|
|
)
|
|
value_estimates, _ = self.policy.actor_critic.critic_pass(
|
|
obs, memories, sequence_length=self.policy.sequence_length
|
|
)
|
|
if self.policy.use_continuous_act:
|
|
squeezed_actions = actions.squeeze(-1)
|
|
# Only need grad for q1, as that is used for policy.
|
|
q1p_out, q2p_out = self.value_network(
|
|
obs,
|
|
sampled_actions,
|
|
memories=q_memories,
|
|
sequence_length=self.policy.sequence_length,
|
|
q2_grad=False,
|
|
)
|
|
q1_out, q2_out = self.value_network(
|
|
obs,
|
|
squeezed_actions,
|
|
memories=q_memories,
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
q1_stream, q2_stream = q1_out, q2_out
|
|
else:
|
|
# For discrete, you don't need to backprop through the Q for the policy
|
|
q1p_out, q2p_out = self.value_network(
|
|
obs,
|
|
memories=q_memories,
|
|
sequence_length=self.policy.sequence_length,
|
|
q1_grad=False,
|
|
q2_grad=False,
|
|
)
|
|
q1_out, q2_out = self.value_network(
|
|
obs,
|
|
memories=q_memories,
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
q1_stream = self._condense_q_streams(q1_out, actions)
|
|
q2_stream = self._condense_q_streams(q2_out, actions)
|
|
|
|
with torch.no_grad():
|
|
target_values, _ = self.target_network(
|
|
next_obs,
|
|
memories=next_memories,
|
|
sequence_length=self.policy.sequence_length,
|
|
)
|
|
masks = ModelUtils.list_to_tensor(batch["masks"], dtype=torch.bool)
|
|
use_discrete = not self.policy.use_continuous_act
|
|
dones = ModelUtils.list_to_tensor(batch["done"])
|
|
|
|
q1_loss, q2_loss = self.sac_q_loss(
|
|
q1_stream, q2_stream, target_values, dones, rewards, masks
|
|
)
|
|
value_loss = self.sac_value_loss(
|
|
log_probs, value_estimates, q1p_out, q2p_out, masks, use_discrete
|
|
)
|
|
policy_loss = self.sac_policy_loss(log_probs, q1p_out, masks, use_discrete)
|
|
entropy_loss = self.sac_entropy_loss(log_probs, masks, use_discrete)
|
|
|
|
total_value_loss = q1_loss + q2_loss + value_loss
|
|
|
|
decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
|
|
ModelUtils.update_learning_rate(self.policy_optimizer, decay_lr)
|
|
self.policy_optimizer.zero_grad()
|
|
policy_loss.backward()
|
|
self.policy_optimizer.step()
|
|
|
|
ModelUtils.update_learning_rate(self.value_optimizer, decay_lr)
|
|
self.value_optimizer.zero_grad()
|
|
total_value_loss.backward()
|
|
self.value_optimizer.step()
|
|
|
|
ModelUtils.update_learning_rate(self.entropy_optimizer, decay_lr)
|
|
self.entropy_optimizer.zero_grad()
|
|
entropy_loss.backward()
|
|
self.entropy_optimizer.step()
|
|
|
|
# Update target network
|
|
ModelUtils.soft_update(
|
|
self.policy.actor_critic.critic, self.target_network, self.tau
|
|
)
|
|
update_stats = {
|
|
"Losses/Policy Loss": policy_loss.item(),
|
|
"Losses/Value Loss": value_loss.item(),
|
|
"Losses/Q1 Loss": q1_loss.item(),
|
|
"Losses/Q2 Loss": q2_loss.item(),
|
|
"Policy/Entropy Coeff": torch.mean(torch.exp(self._log_ent_coef)).item(),
|
|
"Policy/Learning Rate": decay_lr,
|
|
}
|
|
|
|
return update_stats
|
|
|
|
def update_reward_signals(
|
|
self, reward_signal_minibatches: Mapping[str, AgentBuffer], num_sequences: int
|
|
) -> Dict[str, float]:
|
|
update_stats: Dict[str, float] = {}
|
|
for name, update_buffer in reward_signal_minibatches.items():
|
|
update_stats.update(self.reward_signals[name].update(update_buffer))
|
|
return update_stats
|
|
|
|
def get_modules(self):
|
|
modules = {
|
|
"Optimizer:value_network": self.value_network,
|
|
"Optimizer:target_network": self.target_network,
|
|
"Optimizer:policy_optimizer": self.policy_optimizer,
|
|
"Optimizer:value_optimizer": self.value_optimizer,
|
|
"Optimizer:entropy_optimizer": self.entropy_optimizer,
|
|
}
|
|
for reward_provider in self.reward_signals.values():
|
|
modules.update(reward_provider.get_modules())
|
|
return modules
|