您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
332 行
11 KiB
332 行
11 KiB
from unittest import mock
|
|
import pytest
|
|
|
|
import numpy as np
|
|
from mlagents.tf_utils import tf
|
|
|
|
import yaml
|
|
|
|
from mlagents.trainers.ppo.trainer import PPOTrainer, discount_rewards
|
|
from mlagents.trainers.ppo.optimizer import PPOOptimizer
|
|
from mlagents.trainers.policy.nn_policy import NNPolicy
|
|
from mlagents.trainers.brain import BrainParameters
|
|
from mlagents.trainers.agent_processor import AgentManagerQueue
|
|
from mlagents.trainers.tests import mock_brain as mb
|
|
from mlagents.trainers.tests.mock_brain import make_brain_parameters
|
|
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.safe_load(
|
|
"""
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
normalize: true
|
|
memory_size: 10
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
summary_path: test
|
|
model_path: test
|
|
reward_signals:
|
|
extrinsic:
|
|
strength: 1.0
|
|
gamma: 0.99
|
|
"""
|
|
)
|
|
|
|
|
|
VECTOR_ACTION_SPACE = [2]
|
|
VECTOR_OBS_SPACE = 8
|
|
DISCRETE_ACTION_SPACE = [3, 3, 3, 2]
|
|
BUFFER_INIT_SAMPLES = 64
|
|
NUM_AGENTS = 12
|
|
|
|
|
|
def _create_ppo_optimizer_ops_mock(dummy_config, use_rnn, use_discrete, use_visual):
|
|
mock_brain = mb.setup_mock_brain(
|
|
use_discrete,
|
|
use_visual,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
|
|
trainer_parameters = dummy_config
|
|
model_path = "testmodel"
|
|
trainer_parameters["model_path"] = model_path
|
|
trainer_parameters["keep_checkpoints"] = 3
|
|
trainer_parameters["use_recurrent"] = use_rnn
|
|
policy = NNPolicy(
|
|
0, mock_brain, trainer_parameters, False, False, create_tf_graph=False
|
|
)
|
|
optimizer = PPOOptimizer(policy, trainer_parameters)
|
|
return optimizer
|
|
|
|
|
|
def _create_fake_trajectory(use_discrete, use_visual, time_horizon):
|
|
if use_discrete:
|
|
act_space = DISCRETE_ACTION_SPACE
|
|
else:
|
|
act_space = VECTOR_ACTION_SPACE
|
|
|
|
if use_visual:
|
|
num_vis_obs = 1
|
|
vec_obs_size = 0
|
|
else:
|
|
num_vis_obs = 0
|
|
vec_obs_size = VECTOR_OBS_SPACE
|
|
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
vec_obs_size=vec_obs_size,
|
|
num_vis_obs=num_vis_obs,
|
|
action_space=act_space,
|
|
)
|
|
return trajectory
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_ppo_optimizer_update(dummy_config, rnn, visual, discrete):
|
|
# Test evaluate
|
|
tf.reset_default_graph()
|
|
optimizer = _create_ppo_optimizer_ops_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
# Test update
|
|
update_buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, optimizer.policy.brain)
|
|
# Mock out reward signal eval
|
|
update_buffer["advantages"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_returns"] = update_buffer["environment_rewards"]
|
|
update_buffer["extrinsic_value_estimates"] = update_buffer["environment_rewards"]
|
|
optimizer.update(
|
|
update_buffer,
|
|
num_sequences=update_buffer.num_experiences // dummy_config["sequence_length"],
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
|
|
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
|
|
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
|
|
def test_ppo_get_value_estimates(dummy_config, rnn, visual, discrete):
|
|
tf.reset_default_graph()
|
|
|
|
optimizer = _create_ppo_optimizer_ops_mock(
|
|
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual
|
|
)
|
|
time_horizon = 15
|
|
trajectory = _create_fake_trajectory(discrete, visual, time_horizon)
|
|
run_out, final_value_out = optimizer.get_trajectory_value_estimates(
|
|
trajectory.to_agentbuffer(), trajectory.next_obs, done=False
|
|
)
|
|
for key, val in run_out.items():
|
|
assert type(key) is str
|
|
assert len(val) == 15
|
|
|
|
run_out, final_value_out = optimizer.get_trajectory_value_estimates(
|
|
trajectory.to_agentbuffer(), trajectory.next_obs, done=True
|
|
)
|
|
for key, val in final_value_out.items():
|
|
assert type(key) is str
|
|
assert val == 0.0
|
|
|
|
# Check if we ignore terminal states properly
|
|
optimizer.reward_signals["extrinsic"].use_terminal_states = False
|
|
run_out, final_value_out = optimizer.get_trajectory_value_estimates(
|
|
trajectory.to_agentbuffer(), trajectory.next_obs, done=False
|
|
)
|
|
for key, val in final_value_out.items():
|
|
assert type(key) is str
|
|
assert val != 0.0
|
|
|
|
|
|
def test_rl_functions():
|
|
rewards = np.array([0.0, 0.0, 0.0, 1.0], dtype=np.float32)
|
|
gamma = 0.9
|
|
returns = discount_rewards(rewards, gamma, 0.0)
|
|
np.testing.assert_array_almost_equal(
|
|
returns, np.array([0.729, 0.81, 0.9, 1.0], dtype=np.float32)
|
|
)
|
|
|
|
|
|
@mock.patch("mlagents.trainers.ppo.trainer.PPOOptimizer")
|
|
def test_trainer_increment_step(ppo_optimizer, dummy_config):
|
|
trainer_params = dummy_config
|
|
mock_optimizer = mock.Mock()
|
|
mock_optimizer.reward_signals = {}
|
|
ppo_optimizer.return_value = mock_optimizer
|
|
|
|
brain_params = BrainParameters(
|
|
brain_name="test_brain",
|
|
vector_observation_space_size=1,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[2],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
|
|
trainer = PPOTrainer(
|
|
brain_params.brain_name, 0, trainer_params, True, False, 0, "0"
|
|
)
|
|
policy_mock = mock.Mock(spec=NNPolicy)
|
|
policy_mock.get_current_step.return_value = 0
|
|
step_count = (
|
|
5
|
|
) # 10 hacked because this function is no longer called through trainer
|
|
policy_mock.increment_step = mock.Mock(return_value=step_count)
|
|
trainer.add_policy("testbehavior", policy_mock)
|
|
|
|
trainer._increment_step(5, "testbehavior")
|
|
policy_mock.increment_step.assert_called_with(5)
|
|
assert trainer.step == step_count
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False])
|
|
def test_trainer_update_policy(dummy_config, use_discrete):
|
|
mock_brain = mb.setup_mock_brain(
|
|
use_discrete,
|
|
False,
|
|
vector_action_space=VECTOR_ACTION_SPACE,
|
|
vector_obs_space=VECTOR_OBS_SPACE,
|
|
discrete_action_space=DISCRETE_ACTION_SPACE,
|
|
)
|
|
|
|
trainer_params = dummy_config
|
|
trainer_params["use_recurrent"] = True
|
|
|
|
# Test curiosity reward signal
|
|
trainer_params["reward_signals"]["curiosity"] = {}
|
|
trainer_params["reward_signals"]["curiosity"]["strength"] = 1.0
|
|
trainer_params["reward_signals"]["curiosity"]["gamma"] = 0.99
|
|
trainer_params["reward_signals"]["curiosity"]["encoding_size"] = 128
|
|
|
|
trainer = PPOTrainer(mock_brain.brain_name, 0, trainer_params, True, False, 0, "0")
|
|
policy = trainer.create_policy(mock_brain)
|
|
trainer.add_policy(mock_brain.brain_name, policy)
|
|
# Test update with sequence length smaller than batch size
|
|
buffer = mb.simulate_rollout(BUFFER_INIT_SAMPLES, mock_brain)
|
|
# Mock out reward signal eval
|
|
buffer["extrinsic_rewards"] = buffer["environment_rewards"]
|
|
buffer["extrinsic_returns"] = buffer["environment_rewards"]
|
|
buffer["extrinsic_value_estimates"] = buffer["environment_rewards"]
|
|
buffer["curiosity_rewards"] = buffer["environment_rewards"]
|
|
buffer["curiosity_returns"] = buffer["environment_rewards"]
|
|
buffer["curiosity_value_estimates"] = buffer["environment_rewards"]
|
|
buffer["advantages"] = buffer["environment_rewards"]
|
|
|
|
trainer.update_buffer = buffer
|
|
trainer._update_policy()
|
|
# Make batch length a larger multiple of sequence length
|
|
trainer.trainer_parameters["batch_size"] = 128
|
|
trainer._update_policy()
|
|
# Make batch length a larger non-multiple of sequence length
|
|
trainer.trainer_parameters["batch_size"] = 100
|
|
trainer._update_policy()
|
|
|
|
|
|
def test_process_trajectory(dummy_config):
|
|
brain_params = BrainParameters(
|
|
brain_name="test_brain",
|
|
vector_observation_space_size=1,
|
|
camera_resolutions=[],
|
|
vector_action_space_size=[2],
|
|
vector_action_descriptions=[],
|
|
vector_action_space_type=0,
|
|
)
|
|
dummy_config["summary_path"] = "./summaries/test_trainer_summary"
|
|
dummy_config["model_path"] = "./models/test_trainer_models/TestModel"
|
|
trainer = PPOTrainer(brain_params, 0, dummy_config, True, False, 0, "0")
|
|
policy = trainer.create_policy(brain_params)
|
|
trainer.add_policy(brain_params.brain_name, policy)
|
|
trajectory_queue = AgentManagerQueue("testbrain")
|
|
trainer.subscribe_trajectory_queue(trajectory_queue)
|
|
time_horizon = 15
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon,
|
|
max_step_complete=True,
|
|
vec_obs_size=1,
|
|
num_vis_obs=0,
|
|
action_space=[2],
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that trainer put trajectory in update buffer
|
|
assert trainer.update_buffer.num_experiences == 15
|
|
|
|
# Check that GAE worked
|
|
assert (
|
|
"advantages" in trainer.update_buffer
|
|
and "discounted_returns" in trainer.update_buffer
|
|
)
|
|
|
|
# Check that the stats are being collected as episode isn't complete
|
|
for reward in trainer.collected_rewards.values():
|
|
for agent in reward.values():
|
|
assert agent > 0
|
|
|
|
# Add a terminal trajectory
|
|
trajectory = make_fake_trajectory(
|
|
length=time_horizon + 1,
|
|
max_step_complete=False,
|
|
vec_obs_size=1,
|
|
num_vis_obs=0,
|
|
action_space=[2],
|
|
)
|
|
trajectory_queue.put(trajectory)
|
|
trainer.advance()
|
|
|
|
# Check that the stats are reset as episode is finished
|
|
for reward in trainer.collected_rewards.values():
|
|
for agent in reward.values():
|
|
assert agent == 0
|
|
assert trainer.stats_reporter.get_stats_summaries("Policy/Extrinsic Reward").num > 0
|
|
|
|
|
|
@mock.patch("mlagents.trainers.ppo.trainer.PPOOptimizer")
|
|
def test_add_get_policy(ppo_optimizer, dummy_config):
|
|
brain_params = make_brain_parameters(
|
|
discrete_action=False, visual_inputs=0, vec_obs_size=6
|
|
)
|
|
mock_optimizer = mock.Mock()
|
|
mock_optimizer.reward_signals = {}
|
|
ppo_optimizer.return_value = mock_optimizer
|
|
|
|
dummy_config["summary_path"] = "./summaries/test_trainer_summary"
|
|
dummy_config["model_path"] = "./models/test_trainer_models/TestModel"
|
|
trainer = PPOTrainer(brain_params, 0, dummy_config, True, False, 0, "0")
|
|
policy = mock.Mock(spec=NNPolicy)
|
|
policy.get_current_step.return_value = 2000
|
|
|
|
trainer.add_policy(brain_params.brain_name, policy)
|
|
assert trainer.get_policy(brain_params.brain_name) == policy
|
|
|
|
# Make sure the summary steps were loaded properly
|
|
assert trainer.get_step == 2000
|
|
assert trainer.next_summary_step > 2000
|
|
|
|
# Test incorrect class of policy
|
|
policy = mock.Mock()
|
|
with pytest.raises(RuntimeError):
|
|
trainer.add_policy(brain_params, policy)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main()
|