您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
239 行
7.7 KiB
239 行
7.7 KiB
from distutils.util import strtobool
|
|
import os
|
|
from typing import Any, List, Set
|
|
import shutil
|
|
from distutils.version import LooseVersion
|
|
|
|
try:
|
|
from tf2onnx.tfonnx import process_tf_graph, tf_optimize
|
|
from tf2onnx import optimizer
|
|
|
|
ONNX_EXPORT_ENABLED = True
|
|
except ImportError:
|
|
# Either onnx and tf2onnx not installed, or they're not compatible with the version of tensorflow
|
|
ONNX_EXPORT_ENABLED = False
|
|
pass
|
|
|
|
from mlagents.tf_utils import tf
|
|
|
|
from tensorflow.python.platform import gfile
|
|
from tensorflow.python.framework import graph_util
|
|
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents.trainers.tf import tensorflow_to_barracuda as tf2bc
|
|
from mlagents.trainers.settings import SerializationSettings
|
|
|
|
if LooseVersion(tf.__version__) < LooseVersion("1.12.0"):
|
|
# ONNX is only tested on 1.12.0 and later
|
|
ONNX_EXPORT_ENABLED = False
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
POSSIBLE_INPUT_NODES = frozenset(
|
|
[
|
|
"action_masks",
|
|
"epsilon",
|
|
"prev_action",
|
|
"recurrent_in",
|
|
"sequence_length",
|
|
"vector_observation",
|
|
]
|
|
)
|
|
|
|
POSSIBLE_OUTPUT_NODES = frozenset(
|
|
["action", "action_probs", "recurrent_out", "value_estimate"]
|
|
)
|
|
|
|
MODEL_CONSTANTS = frozenset(
|
|
[
|
|
"action_output_shape",
|
|
"is_continuous_control",
|
|
"memory_size",
|
|
"version_number",
|
|
"trainer_major_version",
|
|
"trainer_minor_version",
|
|
"trainer_patch_version",
|
|
]
|
|
)
|
|
VISUAL_OBSERVATION_PREFIX = "visual_observation_"
|
|
|
|
|
|
def export_policy_model(
|
|
model_path: str,
|
|
output_filepath: str,
|
|
brain_name: str,
|
|
graph: tf.Graph,
|
|
sess: tf.Session,
|
|
) -> None:
|
|
"""
|
|
Exports a TF graph for a Policy to .nn and/or .onnx format for Unity embedding.
|
|
|
|
:param output_filepath: file path to output the model (without file suffix)
|
|
:param brain_name: brain name of the trained model
|
|
:param graph: Tensorflow Graph for the policy
|
|
:param sess: Tensorflow session for the policy
|
|
"""
|
|
frozen_graph_def = _make_frozen_graph(brain_name, graph, sess)
|
|
if not os.path.exists(output_filepath):
|
|
os.makedirs(output_filepath)
|
|
# Save frozen graph
|
|
frozen_graph_def_path = model_path + "/frozen_graph_def.pb"
|
|
with gfile.GFile(frozen_graph_def_path, "wb") as f:
|
|
f.write(frozen_graph_def.SerializeToString())
|
|
|
|
# Convert to barracuda
|
|
if SerializationSettings.convert_to_barracuda:
|
|
tf2bc.convert(frozen_graph_def_path, f"{output_filepath}.nn")
|
|
logger.info(f"Exported {output_filepath}.nn")
|
|
|
|
# Save to onnx too (if we were able to import it)
|
|
if ONNX_EXPORT_ENABLED:
|
|
if SerializationSettings.convert_to_onnx:
|
|
try:
|
|
onnx_graph = convert_frozen_to_onnx(brain_name, frozen_graph_def)
|
|
onnx_output_path = f"{output_filepath}.onnx"
|
|
with open(onnx_output_path, "wb") as f:
|
|
f.write(onnx_graph.SerializeToString())
|
|
logger.info(f"Converting to {onnx_output_path}")
|
|
except Exception:
|
|
# Make conversion errors fatal depending on environment variables (only done during CI)
|
|
if _enforce_onnx_conversion():
|
|
raise
|
|
logger.exception(
|
|
"Exception trying to save ONNX graph. Please report this error on "
|
|
"https://github.com/Unity-Technologies/ml-agents/issues and "
|
|
"attach a copy of frozen_graph_def.pb"
|
|
)
|
|
|
|
else:
|
|
if _enforce_onnx_conversion():
|
|
raise RuntimeError(
|
|
"ONNX conversion enforced, but couldn't import dependencies."
|
|
)
|
|
|
|
|
|
def _make_frozen_graph(
|
|
brain_name: str, graph: tf.Graph, sess: tf.Session
|
|
) -> tf.GraphDef:
|
|
with graph.as_default():
|
|
target_nodes = ",".join(_process_graph(brain_name, graph))
|
|
graph_def = graph.as_graph_def()
|
|
output_graph_def = graph_util.convert_variables_to_constants(
|
|
sess, graph_def, target_nodes.replace(" ", "").split(",")
|
|
)
|
|
return output_graph_def
|
|
|
|
|
|
def convert_frozen_to_onnx(brain_name: str, frozen_graph_def: tf.GraphDef) -> Any:
|
|
# This is basically https://github.com/onnx/tensorflow-onnx/blob/master/tf2onnx/convert.py
|
|
|
|
inputs = _get_input_node_names(frozen_graph_def)
|
|
outputs = _get_output_node_names(frozen_graph_def)
|
|
logger.info(f"onnx export - inputs:{inputs} outputs:{outputs}")
|
|
|
|
frozen_graph_def = tf_optimize(
|
|
inputs, outputs, frozen_graph_def, fold_constant=True
|
|
)
|
|
|
|
with tf.Graph().as_default() as tf_graph:
|
|
tf.import_graph_def(frozen_graph_def, name="")
|
|
with tf.Session(graph=tf_graph):
|
|
g = process_tf_graph(
|
|
tf_graph,
|
|
input_names=inputs,
|
|
output_names=outputs,
|
|
opset=SerializationSettings.onnx_opset,
|
|
)
|
|
|
|
onnx_graph = optimizer.optimize_graph(g)
|
|
model_proto = onnx_graph.make_model(brain_name)
|
|
|
|
return model_proto
|
|
|
|
|
|
def _get_input_node_names(frozen_graph_def: Any) -> List[str]:
|
|
"""
|
|
Get the list of input node names from the graph.
|
|
Names are suffixed with ":0"
|
|
"""
|
|
node_names = _get_frozen_graph_node_names(frozen_graph_def)
|
|
input_names = node_names & POSSIBLE_INPUT_NODES
|
|
|
|
# Check visual inputs sequentially, and exit as soon as we don't find one
|
|
vis_index = 0
|
|
while True:
|
|
vis_node_name = f"{VISUAL_OBSERVATION_PREFIX}{vis_index}"
|
|
if vis_node_name in node_names:
|
|
input_names.add(vis_node_name)
|
|
else:
|
|
break
|
|
vis_index += 1
|
|
# Append the port
|
|
return [f"{n}:0" for n in input_names]
|
|
|
|
|
|
def _get_output_node_names(frozen_graph_def: Any) -> List[str]:
|
|
"""
|
|
Get the list of output node names from the graph.
|
|
Also include constants, so that they will be readable by the
|
|
onnx importer.
|
|
Names are suffixed with ":0"
|
|
"""
|
|
node_names = _get_frozen_graph_node_names(frozen_graph_def)
|
|
output_names = node_names & (POSSIBLE_OUTPUT_NODES | MODEL_CONSTANTS)
|
|
# Append the port
|
|
return [f"{n}:0" for n in output_names]
|
|
|
|
|
|
def _get_frozen_graph_node_names(frozen_graph_def: Any) -> Set[str]:
|
|
"""
|
|
Get all the node names from the graph.
|
|
"""
|
|
names = set()
|
|
for node in frozen_graph_def.node:
|
|
names.add(node.name)
|
|
return names
|
|
|
|
|
|
def _process_graph(brain_name: str, graph: tf.Graph) -> List[str]:
|
|
"""
|
|
Gets the list of the output nodes present in the graph for inference
|
|
:return: list of node names
|
|
"""
|
|
all_nodes = [x.name for x in graph.as_graph_def().node]
|
|
nodes = [x for x in all_nodes if x in POSSIBLE_OUTPUT_NODES | MODEL_CONSTANTS]
|
|
logger.info("List of nodes to export for brain :" + brain_name)
|
|
for n in nodes:
|
|
logger.info("\t" + n)
|
|
return nodes
|
|
|
|
|
|
def _enforce_onnx_conversion() -> bool:
|
|
env_var_name = "TEST_ENFORCE_ONNX_CONVERSION"
|
|
if env_var_name not in os.environ:
|
|
return False
|
|
|
|
val = os.environ[env_var_name]
|
|
try:
|
|
# This handles e.g. "false" converting reasonably to False
|
|
return strtobool(val)
|
|
except Exception:
|
|
return False
|
|
|
|
|
|
def copy_model_files(source_nn_path: str, destination_nn_path: str) -> None:
|
|
"""
|
|
Copy the .nn file at the given source to the destination.
|
|
Also copies the corresponding .onnx file if it exists.
|
|
"""
|
|
shutil.copyfile(source_nn_path, destination_nn_path)
|
|
logger.info(f"Copied {source_nn_path} to {destination_nn_path}.")
|
|
# Copy the onnx file if it exists
|
|
source_onnx_path = os.path.splitext(source_nn_path)[0] + ".onnx"
|
|
destination_onnx_path = os.path.splitext(destination_nn_path)[0] + ".onnx"
|
|
try:
|
|
shutil.copyfile(source_onnx_path, destination_onnx_path)
|
|
logger.info(f"Copied {source_onnx_path} to {destination_onnx_path}.")
|
|
except OSError:
|
|
pass
|