Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

222 行
7.1 KiB

import pytest
import yaml
from unittest.mock import MagicMock, patch, mock_open
from mlagents.trainers import learn
from mlagents.trainers.trainer_controller import TrainerController
from mlagents.trainers.learn import parse_command_line
from mlagents.trainers.cli_utils import DetectDefault
from mlagents_envs.exception import UnityEnvironmentException
from mlagents.trainers.stats import StatsReporter
def basic_options(extra_args=None):
extra_args = extra_args or {}
args = ["basic_path"]
if extra_args:
args += [f"{k}={v}" for k, v in extra_args.items()]
return parse_command_line(args)
MOCK_YAML = """
behaviors:
{}
"""
MOCK_PARAMETER_YAML = """
behaviors:
{}
env_settings:
env_path: "./oldenvfile"
num_envs: 4
base_port: 4001
seed: 9870
checkpoint_settings:
run_id: uselessrun
debug: false
"""
MOCK_SAMPLER_CURRICULUM_YAML = """
parameter_randomization:
sampler1: foo
curriculum:
behavior1:
parameters:
foo: [0.2, 0.5]
behavior2:
parameters:
foo: [0.2, 0.5]
"""
@patch("mlagents.trainers.learn.write_timing_tree")
@patch("mlagents.trainers.learn.write_run_options")
@patch("mlagents.trainers.learn.handle_existing_directories")
@patch("mlagents.trainers.learn.TrainerFactory")
@patch("mlagents.trainers.learn.SamplerManager")
@patch("mlagents.trainers.learn.SubprocessEnvManager")
@patch("mlagents.trainers.learn.create_environment_factory")
@patch("mlagents.trainers.settings.load_config")
def test_run_training(
load_config,
create_environment_factory,
subproc_env_mock,
sampler_manager_mock,
trainer_factory_mock,
handle_dir_mock,
write_run_options_mock,
write_timing_tree_mock,
):
mock_env = MagicMock()
mock_env.external_brain_names = []
mock_env.academy_name = "TestAcademyName"
create_environment_factory.return_value = mock_env
load_config.return_value = yaml.safe_load(MOCK_YAML)
mock_init = MagicMock(return_value=None)
with patch.object(TrainerController, "__init__", mock_init):
with patch.object(TrainerController, "start_learning", MagicMock()):
options = basic_options()
learn.run_training(0, options)
mock_init.assert_called_once_with(
trainer_factory_mock.return_value,
"results/ppo",
"ppo",
None,
True,
0,
sampler_manager_mock.return_value,
None,
)
handle_dir_mock.assert_called_once_with("results/ppo", False, False, None)
write_timing_tree_mock.assert_called_once_with("results/ppo/run_logs")
write_run_options_mock.assert_called_once_with("results/ppo", options)
StatsReporter.writers.clear() # make sure there aren't any writers as added by learn.py
def test_bad_env_path():
with pytest.raises(UnityEnvironmentException):
factory = learn.create_environment_factory(
env_path="/foo/bar",
no_graphics=True,
seed=-1,
start_port=8000,
env_args=None,
log_folder="results/log_folder",
)
factory(worker_id=-1, side_channels=[])
@patch("builtins.open", new_callable=mock_open, read_data=MOCK_YAML)
def test_commandline_args(mock_file):
# No args raises
# with pytest.raises(SystemExit):
# parse_command_line([])
# Test with defaults
opt = parse_command_line(["mytrainerpath"])
assert opt.behaviors == {}
assert opt.env_settings.env_path is None
assert opt.parameter_randomization is None
assert opt.checkpoint_settings.resume is False
assert opt.checkpoint_settings.inference is False
assert opt.checkpoint_settings.run_id == "ppo"
assert opt.env_settings.seed == -1
assert opt.env_settings.base_port == 5005
assert opt.env_settings.num_envs == 1
assert opt.engine_settings.no_graphics is False
assert opt.debug is False
assert opt.env_settings.env_args is None
full_args = [
"mytrainerpath",
"--env=./myenvfile",
"--resume",
"--inference",
"--run-id=myawesomerun",
"--seed=7890",
"--train",
"--base-port=4004",
"--num-envs=2",
"--no-graphics",
"--debug",
]
opt = parse_command_line(full_args)
assert opt.behaviors == {}
assert opt.env_settings.env_path == "./myenvfile"
assert opt.parameter_randomization is None
assert opt.checkpoint_settings.run_id == "myawesomerun"
assert opt.env_settings.seed == 7890
assert opt.env_settings.base_port == 4004
assert opt.env_settings.num_envs == 2
assert opt.engine_settings.no_graphics is True
assert opt.debug is True
assert opt.checkpoint_settings.inference is True
assert opt.checkpoint_settings.resume is True
@patch("builtins.open", new_callable=mock_open, read_data=MOCK_PARAMETER_YAML)
def test_yaml_args(mock_file):
# Test with opts loaded from YAML
DetectDefault.non_default_args.clear()
opt = parse_command_line(["mytrainerpath"])
assert opt.behaviors == {}
assert opt.env_settings.env_path == "./oldenvfile"
assert opt.parameter_randomization is None
assert opt.checkpoint_settings.run_id == "uselessrun"
assert opt.env_settings.seed == 9870
assert opt.env_settings.base_port == 4001
assert opt.env_settings.num_envs == 4
assert opt.engine_settings.no_graphics is False
assert opt.debug is False
assert opt.env_settings.env_args is None
# Test that CLI overrides YAML
full_args = [
"mytrainerpath",
"--env=./myenvfile",
"--resume",
"--inference",
"--run-id=myawesomerun",
"--seed=7890",
"--train",
"--base-port=4004",
"--num-envs=2",
"--no-graphics",
"--debug",
]
opt = parse_command_line(full_args)
assert opt.behaviors == {}
assert opt.env_settings.env_path == "./myenvfile"
assert opt.parameter_randomization is None
assert opt.checkpoint_settings.run_id == "myawesomerun"
assert opt.env_settings.seed == 7890
assert opt.env_settings.base_port == 4004
assert opt.env_settings.num_envs == 2
assert opt.engine_settings.no_graphics is True
assert opt.debug is True
assert opt.checkpoint_settings.inference is True
assert opt.checkpoint_settings.resume is True
@patch("builtins.open", new_callable=mock_open, read_data=MOCK_SAMPLER_CURRICULUM_YAML)
def test_sampler_configs(mock_file):
opt = parse_command_line(["mytrainerpath"])
assert opt.parameter_randomization == {"sampler1": "foo"}
assert len(opt.curriculum.keys()) == 2
@patch("builtins.open", new_callable=mock_open, read_data=MOCK_YAML)
def test_env_args(mock_file):
full_args = [
"mytrainerpath",
"--env=./myenvfile",
"--env-args", # Everything after here will be grouped in a list
"--foo=bar",
"--blah",
"baz",
"100",
]
opt = parse_command_line(full_args)
assert opt.env_settings.env_args == ["--foo=bar", "--blah", "baz", "100"]