您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
168 行
6.2 KiB
168 行
6.2 KiB
import pytest
|
|
import torch
|
|
import numpy as np
|
|
|
|
from mlagents.trainers.settings import EncoderType
|
|
from mlagents.trainers.torch.utils import ModelUtils
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
from mlagents.trainers.torch.encoders import (
|
|
VectorEncoder,
|
|
VectorAndUnnormalizedInputEncoder,
|
|
)
|
|
from mlagents.trainers.torch.distributions import (
|
|
CategoricalDistInstance,
|
|
GaussianDistInstance,
|
|
)
|
|
|
|
|
|
def test_min_visual_size():
|
|
# Make sure each EncoderType has an entry in MIS_RESOLUTION_FOR_ENCODER
|
|
assert set(ModelUtils.MIN_RESOLUTION_FOR_ENCODER.keys()) == set(EncoderType)
|
|
|
|
for encoder_type in EncoderType:
|
|
good_size = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type]
|
|
vis_input = torch.ones((1, 3, good_size, good_size))
|
|
ModelUtils._check_resolution_for_encoder(good_size, good_size, encoder_type)
|
|
enc_func = ModelUtils.get_encoder_for_type(encoder_type)
|
|
enc = enc_func(good_size, good_size, 3, 1)
|
|
enc.forward(vis_input)
|
|
|
|
# Anything under the min size should raise an exception. If not, decrease the min size!
|
|
with pytest.raises(Exception):
|
|
bad_size = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type] - 1
|
|
vis_input = torch.ones((1, 3, bad_size, bad_size))
|
|
|
|
with pytest.raises(UnityTrainerException):
|
|
# Make sure we'd hit a friendly error during model setup time.
|
|
ModelUtils._check_resolution_for_encoder(
|
|
bad_size, bad_size, encoder_type
|
|
)
|
|
|
|
enc = enc_func(bad_size, bad_size, 3, 1)
|
|
enc.forward(vis_input)
|
|
|
|
|
|
@pytest.mark.parametrize("unnormalized_inputs", [0, 1])
|
|
@pytest.mark.parametrize("num_visual", [0, 1, 2])
|
|
@pytest.mark.parametrize("num_vector", [0, 1, 2])
|
|
@pytest.mark.parametrize("normalize", [True, False])
|
|
@pytest.mark.parametrize("encoder_type", [EncoderType.SIMPLE, EncoderType.NATURE_CNN])
|
|
def test_create_encoders(
|
|
encoder_type, normalize, num_vector, num_visual, unnormalized_inputs
|
|
):
|
|
vec_obs_shape = (5,)
|
|
vis_obs_shape = (84, 84, 3)
|
|
obs_shapes = []
|
|
for _ in range(num_vector):
|
|
obs_shapes.append(vec_obs_shape)
|
|
for _ in range(num_visual):
|
|
obs_shapes.append(vis_obs_shape)
|
|
h_size = 128
|
|
num_layers = 3
|
|
unnormalized_inputs = 1
|
|
vis_enc, vec_enc = ModelUtils.create_encoders(
|
|
obs_shapes, h_size, num_layers, encoder_type, unnormalized_inputs, normalize
|
|
)
|
|
vec_enc = list(vec_enc)
|
|
vis_enc = list(vis_enc)
|
|
assert len(vec_enc) == (
|
|
1 if unnormalized_inputs + num_vector > 0 else 0
|
|
) # There's always at most one vector encoder.
|
|
assert len(vis_enc) == num_visual
|
|
|
|
if unnormalized_inputs > 0:
|
|
assert isinstance(vec_enc[0], VectorAndUnnormalizedInputEncoder)
|
|
elif num_vector > 0:
|
|
assert isinstance(vec_enc[0], VectorEncoder)
|
|
|
|
for enc in vis_enc:
|
|
assert isinstance(enc, ModelUtils.get_encoder_for_type(encoder_type))
|
|
|
|
|
|
def test_list_to_tensor():
|
|
# Test converting pure list
|
|
unconverted_list = [[1, 2], [1, 3], [1, 4]]
|
|
tensor = ModelUtils.list_to_tensor(unconverted_list)
|
|
# Should be equivalent to torch.tensor conversion
|
|
assert torch.equal(tensor, torch.tensor(unconverted_list))
|
|
|
|
# Test converting pure numpy array
|
|
np_list = np.asarray(unconverted_list)
|
|
tensor = ModelUtils.list_to_tensor(np_list)
|
|
# Should be equivalent to torch.tensor conversion
|
|
assert torch.equal(tensor, torch.tensor(unconverted_list))
|
|
|
|
# Test converting list of numpy arrays
|
|
list_of_np = [np.asarray(_el) for _el in unconverted_list]
|
|
tensor = ModelUtils.list_to_tensor(list_of_np)
|
|
# Should be equivalent to torch.tensor conversion
|
|
assert torch.equal(tensor, torch.tensor(unconverted_list))
|
|
|
|
|
|
def test_break_into_branches():
|
|
# Test normal multi-branch case
|
|
all_actions = torch.tensor([[1, 2, 3, 4, 5, 6]])
|
|
action_size = [2, 1, 3]
|
|
broken_actions = ModelUtils.break_into_branches(all_actions, action_size)
|
|
assert len(action_size) == len(broken_actions)
|
|
for i, _action in enumerate(broken_actions):
|
|
assert _action.shape == (1, action_size[i])
|
|
|
|
# Test 1-branch case
|
|
action_size = [6]
|
|
broken_actions = ModelUtils.break_into_branches(all_actions, action_size)
|
|
assert len(broken_actions) == 1
|
|
assert broken_actions[0].shape == (1, 6)
|
|
|
|
|
|
def test_actions_to_onehot():
|
|
all_actions = torch.tensor([[1, 0, 2], [1, 0, 2]])
|
|
action_size = [2, 1, 3]
|
|
oh_actions = ModelUtils.actions_to_onehot(all_actions, action_size)
|
|
expected_result = [
|
|
torch.tensor([[0, 1], [0, 1]]),
|
|
torch.tensor([[1], [1]]),
|
|
torch.tensor([[0, 0, 1], [0, 0, 1]]),
|
|
]
|
|
for res, exp in zip(oh_actions, expected_result):
|
|
assert torch.equal(res, exp)
|
|
|
|
|
|
def test_get_probs_and_entropy():
|
|
# Test continuous
|
|
# Add two dists to the list. This isn't done in the code but we'd like to support it.
|
|
dist_list = [
|
|
GaussianDistInstance(torch.zeros((1, 2)), torch.ones((1, 2))),
|
|
GaussianDistInstance(torch.zeros((1, 2)), torch.ones((1, 2))),
|
|
]
|
|
action_list = [torch.zeros((1, 2)), torch.zeros((1, 2))]
|
|
log_probs, entropies, all_probs = ModelUtils.get_probs_and_entropy(
|
|
action_list, dist_list
|
|
)
|
|
assert log_probs.shape == (1, 2, 2)
|
|
assert entropies.shape == (1, 2, 2)
|
|
assert all_probs is None
|
|
|
|
for log_prob in log_probs.flatten():
|
|
# Log prob of standard normal at 0
|
|
assert log_prob == pytest.approx(-0.919, abs=0.01)
|
|
|
|
for ent in entropies.flatten():
|
|
# entropy of standard normal at 0
|
|
assert ent == pytest.approx(1.42, abs=0.01)
|
|
|
|
# Test continuous
|
|
# Add two dists to the list.
|
|
act_size = 2
|
|
test_prob = torch.tensor(
|
|
[1.0 - 0.1 * (act_size - 1)] + [0.1] * (act_size - 1)
|
|
) # High prob for first action
|
|
dist_list = [CategoricalDistInstance(test_prob), CategoricalDistInstance(test_prob)]
|
|
action_list = [torch.tensor([0]), torch.tensor([1])]
|
|
log_probs, entropies, all_probs = ModelUtils.get_probs_and_entropy(
|
|
action_list, dist_list
|
|
)
|
|
assert all_probs.shape == (len(dist_list * act_size),)
|
|
assert entropies.shape == (len(dist_list),)
|
|
# Make sure the first action has high probability than the others.
|
|
assert log_probs.flatten()[0] > log_probs.flatten()[1]
|