Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

168 行
6.2 KiB

import pytest
import torch
import numpy as np
from mlagents.trainers.settings import EncoderType
from mlagents.trainers.torch.utils import ModelUtils
from mlagents.trainers.exception import UnityTrainerException
from mlagents.trainers.torch.encoders import (
VectorEncoder,
VectorAndUnnormalizedInputEncoder,
)
from mlagents.trainers.torch.distributions import (
CategoricalDistInstance,
GaussianDistInstance,
)
def test_min_visual_size():
# Make sure each EncoderType has an entry in MIS_RESOLUTION_FOR_ENCODER
assert set(ModelUtils.MIN_RESOLUTION_FOR_ENCODER.keys()) == set(EncoderType)
for encoder_type in EncoderType:
good_size = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type]
vis_input = torch.ones((1, 3, good_size, good_size))
ModelUtils._check_resolution_for_encoder(good_size, good_size, encoder_type)
enc_func = ModelUtils.get_encoder_for_type(encoder_type)
enc = enc_func(good_size, good_size, 3, 1)
enc.forward(vis_input)
# Anything under the min size should raise an exception. If not, decrease the min size!
with pytest.raises(Exception):
bad_size = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[encoder_type] - 1
vis_input = torch.ones((1, 3, bad_size, bad_size))
with pytest.raises(UnityTrainerException):
# Make sure we'd hit a friendly error during model setup time.
ModelUtils._check_resolution_for_encoder(
bad_size, bad_size, encoder_type
)
enc = enc_func(bad_size, bad_size, 3, 1)
enc.forward(vis_input)
@pytest.mark.parametrize("unnormalized_inputs", [0, 1])
@pytest.mark.parametrize("num_visual", [0, 1, 2])
@pytest.mark.parametrize("num_vector", [0, 1, 2])
@pytest.mark.parametrize("normalize", [True, False])
@pytest.mark.parametrize("encoder_type", [EncoderType.SIMPLE, EncoderType.NATURE_CNN])
def test_create_encoders(
encoder_type, normalize, num_vector, num_visual, unnormalized_inputs
):
vec_obs_shape = (5,)
vis_obs_shape = (84, 84, 3)
obs_shapes = []
for _ in range(num_vector):
obs_shapes.append(vec_obs_shape)
for _ in range(num_visual):
obs_shapes.append(vis_obs_shape)
h_size = 128
num_layers = 3
unnormalized_inputs = 1
vis_enc, vec_enc = ModelUtils.create_encoders(
obs_shapes, h_size, num_layers, encoder_type, unnormalized_inputs, normalize
)
vec_enc = list(vec_enc)
vis_enc = list(vis_enc)
assert len(vec_enc) == (
1 if unnormalized_inputs + num_vector > 0 else 0
) # There's always at most one vector encoder.
assert len(vis_enc) == num_visual
if unnormalized_inputs > 0:
assert isinstance(vec_enc[0], VectorAndUnnormalizedInputEncoder)
elif num_vector > 0:
assert isinstance(vec_enc[0], VectorEncoder)
for enc in vis_enc:
assert isinstance(enc, ModelUtils.get_encoder_for_type(encoder_type))
def test_list_to_tensor():
# Test converting pure list
unconverted_list = [[1, 2], [1, 3], [1, 4]]
tensor = ModelUtils.list_to_tensor(unconverted_list)
# Should be equivalent to torch.tensor conversion
assert torch.equal(tensor, torch.tensor(unconverted_list))
# Test converting pure numpy array
np_list = np.asarray(unconverted_list)
tensor = ModelUtils.list_to_tensor(np_list)
# Should be equivalent to torch.tensor conversion
assert torch.equal(tensor, torch.tensor(unconverted_list))
# Test converting list of numpy arrays
list_of_np = [np.asarray(_el) for _el in unconverted_list]
tensor = ModelUtils.list_to_tensor(list_of_np)
# Should be equivalent to torch.tensor conversion
assert torch.equal(tensor, torch.tensor(unconverted_list))
def test_break_into_branches():
# Test normal multi-branch case
all_actions = torch.tensor([[1, 2, 3, 4, 5, 6]])
action_size = [2, 1, 3]
broken_actions = ModelUtils.break_into_branches(all_actions, action_size)
assert len(action_size) == len(broken_actions)
for i, _action in enumerate(broken_actions):
assert _action.shape == (1, action_size[i])
# Test 1-branch case
action_size = [6]
broken_actions = ModelUtils.break_into_branches(all_actions, action_size)
assert len(broken_actions) == 1
assert broken_actions[0].shape == (1, 6)
def test_actions_to_onehot():
all_actions = torch.tensor([[1, 0, 2], [1, 0, 2]])
action_size = [2, 1, 3]
oh_actions = ModelUtils.actions_to_onehot(all_actions, action_size)
expected_result = [
torch.tensor([[0, 1], [0, 1]]),
torch.tensor([[1], [1]]),
torch.tensor([[0, 0, 1], [0, 0, 1]]),
]
for res, exp in zip(oh_actions, expected_result):
assert torch.equal(res, exp)
def test_get_probs_and_entropy():
# Test continuous
# Add two dists to the list. This isn't done in the code but we'd like to support it.
dist_list = [
GaussianDistInstance(torch.zeros((1, 2)), torch.ones((1, 2))),
GaussianDistInstance(torch.zeros((1, 2)), torch.ones((1, 2))),
]
action_list = [torch.zeros((1, 2)), torch.zeros((1, 2))]
log_probs, entropies, all_probs = ModelUtils.get_probs_and_entropy(
action_list, dist_list
)
assert log_probs.shape == (1, 2, 2)
assert entropies.shape == (1, 2, 2)
assert all_probs is None
for log_prob in log_probs.flatten():
# Log prob of standard normal at 0
assert log_prob == pytest.approx(-0.919, abs=0.01)
for ent in entropies.flatten():
# entropy of standard normal at 0
assert ent == pytest.approx(1.42, abs=0.01)
# Test continuous
# Add two dists to the list.
act_size = 2
test_prob = torch.tensor(
[1.0 - 0.1 * (act_size - 1)] + [0.1] * (act_size - 1)
) # High prob for first action
dist_list = [CategoricalDistInstance(test_prob), CategoricalDistInstance(test_prob)]
action_list = [torch.tensor([0]), torch.tensor([1])]
log_probs, entropies, all_probs = ModelUtils.get_probs_and_entropy(
action_list, dist_list
)
assert all_probs.shape == (len(dist_list * act_size),)
assert entropies.shape == (len(dist_list),)
# Make sure the first action has high probability than the others.
assert log_probs.flatten()[0] > log_probs.flatten()[1]