您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
614 行
23 KiB
614 行
23 KiB
from typing import Callable, List, Dict, Tuple, Optional, Union
|
|
import abc
|
|
|
|
from mlagents.torch_utils import torch, nn
|
|
|
|
from mlagents_envs.base_env import ActionSpec, ObservationSpec
|
|
from mlagents.trainers.torch.action_model import ActionModel
|
|
from mlagents.trainers.torch.agent_action import AgentAction
|
|
from mlagents.trainers.torch.action_log_probs import ActionLogProbs
|
|
from mlagents.trainers.settings import NetworkSettings
|
|
from mlagents.trainers.torch.utils import ModelUtils
|
|
from mlagents.trainers.torch.decoders import ValueHeads
|
|
from mlagents.trainers.torch.layers import LSTM, LinearEncoder
|
|
from mlagents.trainers.torch.encoders import VectorInput
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
from mlagents.trainers.trajectory import ObsUtil
|
|
from mlagents.trainers.torch.attention import (
|
|
ResidualSelfAttention,
|
|
get_zero_entities_mask,
|
|
)
|
|
|
|
|
|
ActivationFunction = Callable[[torch.Tensor], torch.Tensor]
|
|
EncoderFunction = Callable[
|
|
[torch.Tensor, int, ActivationFunction, int, str, bool], torch.Tensor
|
|
]
|
|
|
|
EPSILON = 1e-7
|
|
|
|
|
|
class NetworkBody(nn.Module):
|
|
def __init__(
|
|
self,
|
|
observation_specs: List[ObservationSpec],
|
|
network_settings: NetworkSettings,
|
|
encoded_act_size: int = 0,
|
|
):
|
|
super().__init__()
|
|
self.normalize = network_settings.normalize
|
|
self.use_lstm = network_settings.memory is not None
|
|
self.h_size = network_settings.hidden_units
|
|
self.m_size = (
|
|
network_settings.memory.memory_size
|
|
if network_settings.memory is not None
|
|
else 0
|
|
)
|
|
|
|
self.processors, self.var_processors, self.embedding_sizes = ModelUtils.create_input_processors(
|
|
observation_specs,
|
|
self.h_size,
|
|
network_settings.vis_encode_type,
|
|
normalize=self.normalize,
|
|
)
|
|
|
|
entity_num_max: int = 0
|
|
for var_processor in self.var_processors:
|
|
entity_max: int = var_processor.entity_num_max_elements
|
|
# Only adds entity max if it was known at construction
|
|
if entity_max > 0:
|
|
entity_num_max += entity_max
|
|
if len(self.var_processors) > 0:
|
|
self.rsa = ResidualSelfAttention(self.h_size, entity_num_max)
|
|
total_enc_size = sum(self.embedding_sizes) + self.h_size
|
|
n_layers = max(1, network_settings.num_layers - 2)
|
|
else:
|
|
total_enc_size = sum(self.embedding_sizes)
|
|
n_layers = max(1, network_settings.num_layers)
|
|
|
|
total_enc_size += encoded_act_size
|
|
self.linear_encoder = LinearEncoder(total_enc_size, n_layers, self.h_size)
|
|
|
|
if self.use_lstm:
|
|
self.lstm = LSTM(self.h_size, self.m_size)
|
|
else:
|
|
self.lstm = None # type: ignore
|
|
|
|
def update_normalization(self, buffer: AgentBuffer) -> None:
|
|
obs = ObsUtil.from_buffer(buffer, len(self.processors))
|
|
for vec_input, enc in zip(obs, self.processors):
|
|
if isinstance(enc, VectorInput):
|
|
enc.update_normalization(torch.as_tensor(vec_input))
|
|
|
|
def copy_normalization(self, other_network: "NetworkBody") -> None:
|
|
if self.normalize:
|
|
for n1, n2 in zip(self.processors, other_network.processors):
|
|
if isinstance(n1, VectorInput) and isinstance(n2, VectorInput):
|
|
n1.copy_normalization(n2)
|
|
|
|
@property
|
|
def memory_size(self) -> int:
|
|
return self.lstm.memory_size if self.use_lstm else 0
|
|
|
|
def forward(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
actions: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
encodes = []
|
|
var_len_inputs = [] # The list of variable length inputs
|
|
|
|
for idx, processor in enumerate(self.processors):
|
|
if processor is not None:
|
|
# The input can be encoded without having to process other inputs
|
|
obs_input = inputs[idx]
|
|
processed_obs = processor(obs_input)
|
|
encodes.append(processed_obs)
|
|
else:
|
|
var_len_inputs.append(inputs[idx])
|
|
if len(encodes) == 0:
|
|
encoded_self = torch.zeros(0, 0)
|
|
else:
|
|
encoded_self = torch.cat(encodes, dim=1)
|
|
if len(var_len_inputs) > 0:
|
|
# Some inputs need to be processed with a variable length encoder
|
|
masks = get_zero_entities_mask(var_len_inputs)
|
|
embeddings: List[torch.Tensor] = []
|
|
for var_len_input, var_len_processor in zip(
|
|
var_len_inputs, self.var_processors
|
|
):
|
|
embeddings.append(var_len_processor(encoded_self, var_len_input))
|
|
qkv = torch.cat(embeddings, dim=1)
|
|
attention_embedding = self.rsa(qkv, masks)
|
|
if encoded_self.shape[1] == 0:
|
|
encoded_self = torch.cat([attention_embedding], dim=1)
|
|
else:
|
|
encoded_self = torch.cat([encoded_self, attention_embedding], dim=1)
|
|
|
|
if encoded_self.shape[1] == 0:
|
|
raise Exception("No valid inputs to network.")
|
|
|
|
# Constants don't work in Barracuda
|
|
if actions is not None:
|
|
encoded_self = torch.cat([encoded_self, actions], dim=1)
|
|
encoding = self.linear_encoder(encoded_self)
|
|
|
|
if self.use_lstm:
|
|
# Resize to (batch, sequence length, encoding size)
|
|
encoding = encoding.reshape([-1, sequence_length, self.h_size])
|
|
encoding, memories = self.lstm(encoding, memories)
|
|
encoding = encoding.reshape([-1, self.m_size // 2])
|
|
return encoding, memories
|
|
|
|
|
|
class ValueNetwork(nn.Module):
|
|
def __init__(
|
|
self,
|
|
stream_names: List[str],
|
|
observation_specs: List[ObservationSpec],
|
|
network_settings: NetworkSettings,
|
|
encoded_act_size: int = 0,
|
|
outputs_per_stream: int = 1,
|
|
):
|
|
|
|
# This is not a typo, we want to call __init__ of nn.Module
|
|
nn.Module.__init__(self)
|
|
self.network_body = NetworkBody(
|
|
observation_specs, network_settings, encoded_act_size=encoded_act_size
|
|
)
|
|
if network_settings.memory is not None:
|
|
encoding_size = network_settings.memory.memory_size // 2
|
|
else:
|
|
encoding_size = network_settings.hidden_units
|
|
self.value_heads = ValueHeads(stream_names, encoding_size, outputs_per_stream)
|
|
|
|
@property
|
|
def memory_size(self) -> int:
|
|
return self.network_body.memory_size
|
|
|
|
def forward(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
actions: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
|
|
encoding, memories = self.network_body(
|
|
inputs, actions, memories, sequence_length
|
|
)
|
|
output = self.value_heads(encoding)
|
|
return output, memories
|
|
|
|
|
|
class Actor(abc.ABC):
|
|
@abc.abstractmethod
|
|
def update_normalization(self, buffer: AgentBuffer) -> None:
|
|
"""
|
|
Updates normalization of Actor based on the provided List of vector obs.
|
|
:param vector_obs: A List of vector obs as tensors.
|
|
"""
|
|
pass
|
|
|
|
def get_action_stats(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[AgentAction, ActionLogProbs, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Returns sampled actions.
|
|
If memory is enabled, return the memories as well.
|
|
:param vec_inputs: A List of vector inputs as tensors.
|
|
:param vis_inputs: A List of visual inputs as tensors.
|
|
:param masks: If using discrete actions, a Tensor of action masks.
|
|
:param memories: If using memory, a Tensor of initial memories.
|
|
:param sequence_length: If using memory, the sequence length.
|
|
:return: A Tuple of AgentAction, ActionLogProbs, entropies, and memories.
|
|
Memories will be None if not using memory.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def forward(
|
|
self,
|
|
vec_inputs: List[torch.Tensor],
|
|
vis_inputs: List[torch.Tensor],
|
|
var_len_inputs: List[torch.Tensor],
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
) -> Tuple[Union[int, torch.Tensor], ...]:
|
|
"""
|
|
Forward pass of the Actor for inference. This is required for export to ONNX, and
|
|
the inputs and outputs of this method should not be changed without a respective change
|
|
in the ONNX export code.
|
|
"""
|
|
pass
|
|
|
|
|
|
class ActorCritic(Actor):
|
|
@abc.abstractmethod
|
|
def critic_pass(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""
|
|
Get value outputs for the given obs.
|
|
:param inputs: List of inputs as tensors.
|
|
:param memories: Tensor of memories, if using memory. Otherwise, None.
|
|
:returns: Dict of reward stream to output tensor for values.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def get_action_stats_and_value(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[
|
|
AgentAction, ActionLogProbs, torch.Tensor, Dict[str, torch.Tensor], torch.Tensor
|
|
]:
|
|
"""
|
|
Returns sampled actions and value estimates.
|
|
If memory is enabled, return the memories as well.
|
|
:param inputs: A List of vector inputs as tensors.
|
|
:param masks: If using discrete actions, a Tensor of action masks.
|
|
:param memories: If using memory, a Tensor of initial memories.
|
|
:param sequence_length: If using memory, the sequence length.
|
|
:return: A Tuple of AgentAction, ActionLogProbs, entropies, Dict of reward signal
|
|
name to value estimate, and memories. Memories will be None if not using memory.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractproperty
|
|
def memory_size(self):
|
|
"""
|
|
Returns the size of the memory (same size used as input and output in the other
|
|
methods) used by this Actor.
|
|
"""
|
|
pass
|
|
|
|
|
|
class SimpleActor(nn.Module, Actor):
|
|
def __init__(
|
|
self,
|
|
observation_specs: List[ObservationSpec],
|
|
network_settings: NetworkSettings,
|
|
action_spec: ActionSpec,
|
|
conditional_sigma: bool = False,
|
|
tanh_squash: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.action_spec = action_spec
|
|
self.version_number = torch.nn.Parameter(
|
|
torch.Tensor([2.0]), requires_grad=False
|
|
)
|
|
self.is_continuous_int_deprecated = torch.nn.Parameter(
|
|
torch.Tensor([int(self.action_spec.is_continuous())]), requires_grad=False
|
|
)
|
|
self.continuous_act_size_vector = torch.nn.Parameter(
|
|
torch.Tensor([int(self.action_spec.continuous_size)]), requires_grad=False
|
|
)
|
|
# TODO: export list of branch sizes instead of sum
|
|
self.discrete_act_size_vector = torch.nn.Parameter(
|
|
torch.Tensor([sum(self.action_spec.discrete_branches)]), requires_grad=False
|
|
)
|
|
self.act_size_vector_deprecated = torch.nn.Parameter(
|
|
torch.Tensor(
|
|
[
|
|
self.action_spec.continuous_size
|
|
+ sum(self.action_spec.discrete_branches)
|
|
]
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
self.network_body = NetworkBody(observation_specs, network_settings)
|
|
if network_settings.memory is not None:
|
|
self.encoding_size = network_settings.memory.memory_size // 2
|
|
else:
|
|
self.encoding_size = network_settings.hidden_units
|
|
self.memory_size_vector = torch.nn.Parameter(
|
|
torch.Tensor([int(self.network_body.memory_size)]), requires_grad=False
|
|
)
|
|
|
|
self.action_model = ActionModel(
|
|
self.encoding_size,
|
|
action_spec,
|
|
conditional_sigma=conditional_sigma,
|
|
tanh_squash=tanh_squash,
|
|
)
|
|
|
|
@property
|
|
def memory_size(self) -> int:
|
|
return self.network_body.memory_size
|
|
|
|
def update_normalization(self, buffer: AgentBuffer) -> None:
|
|
self.network_body.update_normalization(buffer)
|
|
|
|
def get_action_stats(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[AgentAction, ActionLogProbs, torch.Tensor, torch.Tensor]:
|
|
|
|
encoding, memories = self.network_body(
|
|
inputs, memories=memories, sequence_length=sequence_length
|
|
)
|
|
action, log_probs, entropies = self.action_model(encoding, masks)
|
|
return action, log_probs, entropies, memories
|
|
|
|
def forward(
|
|
self,
|
|
vec_inputs: List[torch.Tensor],
|
|
vis_inputs: List[torch.Tensor],
|
|
var_len_inputs: List[torch.Tensor],
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
) -> Tuple[Union[int, torch.Tensor], ...]:
|
|
"""
|
|
Note: This forward() method is required for exporting to ONNX. Don't modify the inputs and outputs.
|
|
|
|
At this moment, torch.onnx.export() doesn't accept None as tensor to be exported,
|
|
so the size of return tuple varies with action spec.
|
|
"""
|
|
# This code will convert the vec and vis obs into a list of inputs for the network
|
|
concatenated_vec_obs = vec_inputs[0]
|
|
inputs = []
|
|
start = 0
|
|
end = 0
|
|
vis_index = 0
|
|
var_len_index = 0
|
|
for i, enc in enumerate(self.network_body.processors):
|
|
if isinstance(enc, VectorInput):
|
|
# This is a vec_obs
|
|
vec_size = self.network_body.embedding_sizes[i]
|
|
end = start + vec_size
|
|
inputs.append(concatenated_vec_obs[:, start:end])
|
|
start = end
|
|
elif enc is not None:
|
|
inputs.append(vis_inputs[vis_index])
|
|
vis_index += 1
|
|
else:
|
|
inputs.append(var_len_inputs[var_len_index])
|
|
var_len_index += 1
|
|
# End of code to convert the vec and vis obs into a list of inputs for the network
|
|
encoding, memories_out = self.network_body(
|
|
inputs, memories=memories, sequence_length=1
|
|
)
|
|
|
|
(
|
|
cont_action_out,
|
|
disc_action_out,
|
|
action_out_deprecated,
|
|
) = self.action_model.get_action_out(encoding, masks)
|
|
export_out = [self.version_number, self.memory_size_vector]
|
|
if self.action_spec.continuous_size > 0:
|
|
export_out += [cont_action_out, self.continuous_act_size_vector]
|
|
if self.action_spec.discrete_size > 0:
|
|
export_out += [disc_action_out, self.discrete_act_size_vector]
|
|
# Only export deprecated nodes with non-hybrid action spec
|
|
if self.action_spec.continuous_size == 0 or self.action_spec.discrete_size == 0:
|
|
export_out += [
|
|
action_out_deprecated,
|
|
self.is_continuous_int_deprecated,
|
|
self.act_size_vector_deprecated,
|
|
]
|
|
return tuple(export_out)
|
|
|
|
|
|
class SharedActorCritic(SimpleActor, ActorCritic):
|
|
def __init__(
|
|
self,
|
|
observation_specs: List[ObservationSpec],
|
|
network_settings: NetworkSettings,
|
|
action_spec: ActionSpec,
|
|
stream_names: List[str],
|
|
conditional_sigma: bool = False,
|
|
tanh_squash: bool = False,
|
|
):
|
|
self.use_lstm = network_settings.memory is not None
|
|
super().__init__(
|
|
observation_specs,
|
|
network_settings,
|
|
action_spec,
|
|
conditional_sigma,
|
|
tanh_squash,
|
|
)
|
|
self.stream_names = stream_names
|
|
self.value_heads = ValueHeads(stream_names, self.encoding_size)
|
|
|
|
def critic_pass(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
|
|
encoding, memories_out = self.network_body(
|
|
inputs, memories=memories, sequence_length=sequence_length
|
|
)
|
|
return self.value_heads(encoding), memories_out
|
|
|
|
def get_stats_and_value(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
actions: AgentAction,
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[ActionLogProbs, torch.Tensor, Dict[str, torch.Tensor]]:
|
|
encoding, memories = self.network_body(
|
|
inputs, memories=memories, sequence_length=sequence_length
|
|
)
|
|
log_probs, entropies = self.action_model.evaluate(encoding, masks, actions)
|
|
value_outputs = self.value_heads(encoding)
|
|
return log_probs, entropies, value_outputs
|
|
|
|
def get_action_stats_and_value(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[
|
|
AgentAction, ActionLogProbs, torch.Tensor, Dict[str, torch.Tensor], torch.Tensor
|
|
]:
|
|
|
|
encoding, memories = self.network_body(
|
|
inputs, memories=memories, sequence_length=sequence_length
|
|
)
|
|
action, log_probs, entropies = self.action_model(encoding, masks)
|
|
value_outputs = self.value_heads(encoding)
|
|
return action, log_probs, entropies, value_outputs, memories
|
|
|
|
|
|
class SeparateActorCritic(SimpleActor, ActorCritic):
|
|
def __init__(
|
|
self,
|
|
observation_specs: List[ObservationSpec],
|
|
network_settings: NetworkSettings,
|
|
action_spec: ActionSpec,
|
|
stream_names: List[str],
|
|
conditional_sigma: bool = False,
|
|
tanh_squash: bool = False,
|
|
):
|
|
self.use_lstm = network_settings.memory is not None
|
|
super().__init__(
|
|
observation_specs,
|
|
network_settings,
|
|
action_spec,
|
|
conditional_sigma,
|
|
tanh_squash,
|
|
)
|
|
self.stream_names = stream_names
|
|
self.critic = ValueNetwork(stream_names, observation_specs, network_settings)
|
|
|
|
@property
|
|
def memory_size(self) -> int:
|
|
return self.network_body.memory_size + self.critic.memory_size
|
|
|
|
def _get_actor_critic_mem(
|
|
self, memories: Optional[torch.Tensor] = None
|
|
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]:
|
|
if self.use_lstm and memories is not None:
|
|
# Use only the back half of memories for critic and actor
|
|
actor_mem, critic_mem = torch.split(memories, self.memory_size // 2, dim=-1)
|
|
actor_mem, critic_mem = actor_mem.contiguous(), critic_mem.contiguous()
|
|
else:
|
|
critic_mem = None
|
|
actor_mem = None
|
|
return actor_mem, critic_mem
|
|
|
|
def critic_pass(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]:
|
|
actor_mem, critic_mem = self._get_actor_critic_mem(memories)
|
|
value_outputs, critic_mem_out = self.critic(
|
|
inputs, memories=critic_mem, sequence_length=sequence_length
|
|
)
|
|
if actor_mem is not None:
|
|
# Make memories with the actor mem unchanged
|
|
memories_out = torch.cat([actor_mem, critic_mem_out], dim=-1)
|
|
else:
|
|
memories_out = None
|
|
return value_outputs, memories_out
|
|
|
|
def get_stats_and_value(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
actions: AgentAction,
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[ActionLogProbs, torch.Tensor, Dict[str, torch.Tensor]]:
|
|
actor_mem, critic_mem = self._get_actor_critic_mem(memories)
|
|
encoding, actor_mem_outs = self.network_body(
|
|
inputs, memories=actor_mem, sequence_length=sequence_length
|
|
)
|
|
log_probs, entropies = self.action_model.evaluate(encoding, masks, actions)
|
|
value_outputs, critic_mem_outs = self.critic(
|
|
inputs, memories=critic_mem, sequence_length=sequence_length
|
|
)
|
|
|
|
return log_probs, entropies, value_outputs
|
|
|
|
def get_action_stats(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[AgentAction, ActionLogProbs, torch.Tensor, torch.Tensor]:
|
|
actor_mem, critic_mem = self._get_actor_critic_mem(memories)
|
|
action, log_probs, entropies, actor_mem_out = super().get_action_stats(
|
|
inputs, masks=masks, memories=actor_mem, sequence_length=sequence_length
|
|
)
|
|
if critic_mem is not None:
|
|
# Make memories with the actor mem unchanged
|
|
memories_out = torch.cat([actor_mem_out, critic_mem], dim=-1)
|
|
else:
|
|
memories_out = None
|
|
return action, log_probs, entropies, memories_out
|
|
|
|
def get_action_stats_and_value(
|
|
self,
|
|
inputs: List[torch.Tensor],
|
|
masks: Optional[torch.Tensor] = None,
|
|
memories: Optional[torch.Tensor] = None,
|
|
sequence_length: int = 1,
|
|
) -> Tuple[
|
|
AgentAction, ActionLogProbs, torch.Tensor, Dict[str, torch.Tensor], torch.Tensor
|
|
]:
|
|
actor_mem, critic_mem = self._get_actor_critic_mem(memories)
|
|
encoding, actor_mem_outs = self.network_body(
|
|
inputs, memories=actor_mem, sequence_length=sequence_length
|
|
)
|
|
action, log_probs, entropies = self.action_model(encoding, masks)
|
|
value_outputs, critic_mem_outs = self.critic(
|
|
inputs, memories=critic_mem, sequence_length=sequence_length
|
|
)
|
|
if self.use_lstm:
|
|
mem_out = torch.cat([actor_mem_outs, critic_mem_outs], dim=-1)
|
|
else:
|
|
mem_out = None
|
|
return action, log_probs, entropies, value_outputs, mem_out
|
|
|
|
def update_normalization(self, buffer: AgentBuffer) -> None:
|
|
super().update_normalization(buffer)
|
|
self.critic.network_body.update_normalization(buffer)
|
|
|
|
|
|
class GlobalSteps(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.__global_step = nn.Parameter(
|
|
torch.Tensor([0]).to(torch.int64), requires_grad=False
|
|
)
|
|
|
|
@property
|
|
def current_step(self):
|
|
return int(self.__global_step.item())
|
|
|
|
@current_step.setter
|
|
def current_step(self, value):
|
|
self.__global_step[:] = value
|
|
|
|
def increment(self, value):
|
|
self.__global_step += value
|
|
|
|
|
|
class LearningRate(nn.Module):
|
|
def __init__(self, lr):
|
|
# Todo: add learning rate decay
|
|
super().__init__()
|
|
self.learning_rate = torch.Tensor([lr])
|