您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
97 行
3.1 KiB
97 行
3.1 KiB
using System.Collections.Generic;
|
|
using NUnit.Framework;
|
|
using UnityEngine;
|
|
using System.Reflection;
|
|
using Barracuda;
|
|
using MLAgents.InferenceBrain;
|
|
using System;
|
|
|
|
namespace MLAgents.Tests
|
|
{
|
|
public class EditModeTestInternalBrainTensorApplier
|
|
{
|
|
class TestAgent : Agent
|
|
{
|
|
public AgentAction GetAction()
|
|
{
|
|
var f = typeof(Agent).GetField(
|
|
"m_Action", BindingFlags.Instance | BindingFlags.NonPublic);
|
|
return (AgentAction)f.GetValue(this);
|
|
}
|
|
}
|
|
|
|
[Test]
|
|
public void Construction()
|
|
{
|
|
var bp = new BrainParameters();
|
|
var alloc = new TensorCachingAllocator();
|
|
var mem = new Dictionary<int, List<float>>();
|
|
var tensorGenerator = new TensorApplier(bp, 0, alloc, mem);
|
|
Assert.IsNotNull(tensorGenerator);
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void ApplyContinuousActionOutput()
|
|
{
|
|
var inputTensor = new TensorProxy()
|
|
{
|
|
shape = new long[] { 2, 3 },
|
|
data = new Tensor(2, 3, new float[] { 1, 2, 3, 4, 5, 6 })
|
|
};
|
|
|
|
var applier = new ContinuousActionOutputApplier();
|
|
|
|
var action0 = new AgentAction();
|
|
var action1 = new AgentAction();
|
|
var callbacks = new List<AgentIdActionPair>()
|
|
{
|
|
new AgentIdActionPair {agentId = 0, action = (a) => action0 = a},
|
|
new AgentIdActionPair {agentId = 1, action = (a) => action1 = a}
|
|
};
|
|
|
|
applier.Apply(inputTensor, callbacks);
|
|
|
|
|
|
Assert.AreEqual(action0.vectorActions[0], 1);
|
|
Assert.AreEqual(action0.vectorActions[1], 2);
|
|
Assert.AreEqual(action0.vectorActions[2], 3);
|
|
|
|
Assert.AreEqual(action1.vectorActions[0], 4);
|
|
Assert.AreEqual(action1.vectorActions[1], 5);
|
|
Assert.AreEqual(action1.vectorActions[2], 6);
|
|
}
|
|
|
|
[Test]
|
|
public void ApplyDiscreteActionOutput()
|
|
{
|
|
var inputTensor = new TensorProxy()
|
|
{
|
|
shape = new long[] { 2, 5 },
|
|
data = new Tensor(
|
|
2,
|
|
5,
|
|
new[] { 0.5f, 22.5f, 0.1f, 5f, 1f, 4f, 5f, 6f, 7f, 8f })
|
|
};
|
|
var alloc = new TensorCachingAllocator();
|
|
var applier = new DiscreteActionOutputApplier(new[] { 2, 3 }, 0, alloc);
|
|
|
|
var action0 = new AgentAction();
|
|
var action1 = new AgentAction();
|
|
var callbacks = new List<AgentIdActionPair>()
|
|
{
|
|
new AgentIdActionPair {agentId = 0, action = (a) => action0 = a},
|
|
new AgentIdActionPair {agentId = 1, action = (a) => action1 = a}
|
|
};
|
|
|
|
applier.Apply(inputTensor, callbacks);
|
|
|
|
Assert.AreEqual(action0.vectorActions[0], 1);
|
|
Assert.AreEqual(action0.vectorActions[1], 1);
|
|
|
|
Assert.AreEqual(action1.vectorActions[0], 1);
|
|
Assert.AreEqual(action1.vectorActions[1], 2);
|
|
alloc.Dispose();
|
|
}
|
|
}
|
|
}
|