您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
189 行
6.7 KiB
189 行
6.7 KiB
using System.Collections.Generic;
|
|
using Barracuda;
|
|
using UnityEngine.Profiling;
|
|
using System;
|
|
using MLAgents.Sensor;
|
|
|
|
namespace MLAgents.InferenceBrain
|
|
{
|
|
public struct AgentInfoSensorsPair
|
|
{
|
|
public AgentInfo agentInfo;
|
|
public List<ISensor> sensors;
|
|
}
|
|
public struct AgentIdActionPair
|
|
{
|
|
public int agentId;
|
|
public Action<AgentAction> action;
|
|
}
|
|
|
|
public class ModelRunner
|
|
{
|
|
List<AgentInfoSensorsPair> m_Infos = new List<AgentInfoSensorsPair>();
|
|
List<AgentIdActionPair> m_ActionFuncs = new List<AgentIdActionPair>();
|
|
ITensorAllocator m_TensorAllocator;
|
|
TensorGenerator m_TensorGenerator;
|
|
TensorApplier m_TensorApplier;
|
|
|
|
NNModel m_Model;
|
|
InferenceDevice m_InferenceDevice;
|
|
IWorker m_Engine;
|
|
bool m_Verbose = false;
|
|
string[] m_OutputNames;
|
|
IReadOnlyList<TensorProxy> m_InferenceInputs;
|
|
IReadOnlyList<TensorProxy> m_InferenceOutputs;
|
|
Dictionary<int, List<float>> m_Memories = new Dictionary<int, List<float>>();
|
|
|
|
SensorShapeValidator m_SensorShapeValidator = new SensorShapeValidator();
|
|
|
|
bool m_VisualObservationsInitialized;
|
|
|
|
/// <summary>
|
|
/// Initializes the Brain with the Model that it will use when selecting actions for
|
|
/// the agents
|
|
/// </summary>
|
|
/// <param name="model"> The Barracuda model to load </param>
|
|
/// <param name="brainParameters"> The parameters of the Brain used to generate the
|
|
/// placeholder tensors </param>
|
|
/// <param name="inferenceDevice"> Inference execution device. CPU is the fastest
|
|
/// option for most of ML Agents models. </param>
|
|
/// <param name="seed"> The seed that will be used to initialize the RandomNormal
|
|
/// and Multinomial objects used when running inference.</param>
|
|
/// <exception cref="UnityAgentsException">Throws an error when the model is null
|
|
/// </exception>
|
|
public ModelRunner(
|
|
NNModel model,
|
|
BrainParameters brainParameters,
|
|
InferenceDevice inferenceDevice = InferenceDevice.CPU,
|
|
int seed = 0)
|
|
{
|
|
Model barracudaModel;
|
|
m_Model = model;
|
|
m_InferenceDevice = inferenceDevice;
|
|
m_TensorAllocator = new TensorCachingAllocator();
|
|
if (model != null)
|
|
{
|
|
#if BARRACUDA_VERBOSE
|
|
m_Verbose = true;
|
|
#endif
|
|
|
|
D.logEnabled = m_Verbose;
|
|
|
|
barracudaModel = ModelLoader.Load(model.Value);
|
|
var executionDevice = inferenceDevice == InferenceDevice.GPU
|
|
? BarracudaWorkerFactory.Type.ComputePrecompiled
|
|
: BarracudaWorkerFactory.Type.CSharp;
|
|
m_Engine = BarracudaWorkerFactory.CreateWorker(executionDevice, barracudaModel, m_Verbose);
|
|
}
|
|
else
|
|
{
|
|
barracudaModel = null;
|
|
m_Engine = null;
|
|
}
|
|
|
|
m_InferenceInputs = BarracudaModelParamLoader.GetInputTensors(barracudaModel);
|
|
m_OutputNames = BarracudaModelParamLoader.GetOutputNames(barracudaModel);
|
|
m_TensorGenerator = new TensorGenerator(
|
|
seed, m_TensorAllocator, m_Memories, barracudaModel);
|
|
m_TensorApplier = new TensorApplier(
|
|
brainParameters, seed, m_TensorAllocator, m_Memories, barracudaModel);
|
|
}
|
|
|
|
static Dictionary<string, Tensor> PrepareBarracudaInputs(IEnumerable<TensorProxy> infInputs)
|
|
{
|
|
var inputs = new Dictionary<string, Tensor>();
|
|
foreach (var inp in infInputs)
|
|
{
|
|
inputs[inp.name] = inp.data;
|
|
}
|
|
|
|
return inputs;
|
|
}
|
|
|
|
public void Dispose()
|
|
{
|
|
if (m_Engine != null)
|
|
m_Engine.Dispose();
|
|
m_TensorAllocator?.Reset(false);
|
|
}
|
|
|
|
List<TensorProxy> FetchBarracudaOutputs(string[] names)
|
|
{
|
|
var outputs = new List<TensorProxy>();
|
|
foreach (var n in names)
|
|
{
|
|
var output = m_Engine.Peek(n);
|
|
outputs.Add(TensorUtils.TensorProxyFromBarracuda(output, n));
|
|
}
|
|
|
|
return outputs;
|
|
}
|
|
|
|
public void PutObservations(AgentInfo info, List<ISensor> sensors, Action<AgentAction> action)
|
|
{
|
|
#if DEBUG
|
|
m_SensorShapeValidator.ValidateSensors(sensors);
|
|
#endif
|
|
m_Infos.Add(new AgentInfoSensorsPair
|
|
{
|
|
agentInfo = info,
|
|
sensors = sensors
|
|
});
|
|
|
|
m_ActionFuncs.Add(new AgentIdActionPair { action = action, agentId = info.episodeId });
|
|
}
|
|
|
|
public void DecideBatch()
|
|
{
|
|
var currentBatchSize = m_Infos.Count;
|
|
if (currentBatchSize == 0)
|
|
{
|
|
return;
|
|
}
|
|
if (!m_VisualObservationsInitialized)
|
|
{
|
|
// Just grab the first agent in the collection (any will suffice, really).
|
|
// We check for an empty Collection above, so this will always return successfully.
|
|
var firstInfo = m_Infos[0];
|
|
m_TensorGenerator.InitializeObservations(firstInfo.sensors, m_TensorAllocator);
|
|
m_VisualObservationsInitialized = true;
|
|
}
|
|
|
|
Profiler.BeginSample("LearningBrain.DecideAction");
|
|
|
|
Profiler.BeginSample($"MLAgents.{m_Model.name}.GenerateTensors");
|
|
// Prepare the input tensors to be feed into the engine
|
|
m_TensorGenerator.GenerateTensors(m_InferenceInputs, currentBatchSize, m_Infos);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"MLAgents.{m_Model.name}.PrepareBarracudaInputs");
|
|
var inputs = PrepareBarracudaInputs(m_InferenceInputs);
|
|
Profiler.EndSample();
|
|
|
|
// Execute the Model
|
|
Profiler.BeginSample($"MLAgents.{m_Model.name}.ExecuteGraph");
|
|
m_Engine.Execute(inputs);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"MLAgents.{m_Model.name}.FetchBarracudaOutputs");
|
|
m_InferenceOutputs = FetchBarracudaOutputs(m_OutputNames);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"MLAgents.{m_Model.name}.ApplyTensors");
|
|
// Update the outputs
|
|
m_TensorApplier.ApplyTensors(m_InferenceOutputs, m_ActionFuncs);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.EndSample();
|
|
|
|
m_Infos.Clear();
|
|
|
|
m_ActionFuncs.Clear();
|
|
}
|
|
|
|
public bool HasModel(NNModel other, InferenceDevice otherInferenceDevice)
|
|
{
|
|
return m_Model == other && m_InferenceDevice == otherInferenceDevice;
|
|
}
|
|
}
|
|
}
|