Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

57 行
2.2 KiB

import torch
from torch import nn
from torch import distributions
EPSILON = 1e-6 # Small value to avoid divide by zero
class GaussianDistribution(nn.Module):
def __init__(self, hidden_size, num_outputs, conditional_sigma=False, **kwargs):
super(GaussianDistribution, self).__init__(**kwargs)
self.conditional_sigma = conditional_sigma
self.mu = nn.Linear(hidden_size, num_outputs)
nn.init.xavier_uniform_(self.mu.weight, gain=0.01)
if conditional_sigma:
self.log_sigma = nn.Linear(hidden_size, num_outputs)
nn.init.xavier_uniform(self.log_sigma.weight, gain=0.01)
else:
self.log_sigma = nn.Parameter(
torch.zeros(1, num_outputs, requires_grad=True)
)
def forward(self, inputs):
mu = self.mu(inputs)
if self.conditional_sigma:
log_sigma = self.log_sigma(inputs)
else:
log_sigma = self.log_sigma
return [distributions.normal.Normal(loc=mu, scale=torch.exp(log_sigma))]
class MultiCategoricalDistribution(nn.Module):
def __init__(self, hidden_size, act_sizes):
super(MultiCategoricalDistribution, self).__init__()
self.branches = self.create_policy_branches(hidden_size, act_sizes)
def create_policy_branches(self, hidden_size, act_sizes):
branches = []
for size in act_sizes:
branch_output_layer = nn.Linear(hidden_size, size)
nn.init.xavier_uniform(branch_output_layer.weight, gain=0.01)
branches.append(branch_output_layer)
return branches
def mask_branch(self, logits, mask):
raw_probs = torch.sigmoid(logits, dim=-1) * mask
normalized_probs = raw_probs / torch.sum(raw_probs, dim=-1)
normalized_logits = torch.log(normalized_probs)
return normalized_logits
def forward(self, inputs, masks):
branch_distributions = []
for idx, branch in enumerate(self.branches):
logits = branch(inputs)
norm_logits = self.mask_branch(logits, masks[idx])
distribution = distributions.categorical.Categorical(logits=norm_logits)
branch_distributions.append(distribution)
return branch_distributions