您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
122 行
4.0 KiB
122 行
4.0 KiB
import os
|
|
import unittest
|
|
import json
|
|
from enum import Enum
|
|
import time
|
|
from mlagents.trainers.training_status import (
|
|
StatusType,
|
|
StatusMetaData,
|
|
GlobalTrainingStatus,
|
|
)
|
|
from mlagents.trainers.policy.checkpoint_manager import (
|
|
NNCheckpointManager,
|
|
NNCheckpoint,
|
|
)
|
|
|
|
|
|
def test_globaltrainingstatus(tmpdir):
|
|
path_dir = os.path.join(tmpdir, "test.json")
|
|
|
|
GlobalTrainingStatus.set_parameter_state("Category1", StatusType.LESSON_NUM, 3)
|
|
GlobalTrainingStatus.save_state(path_dir)
|
|
|
|
with open(path_dir, "r") as fp:
|
|
test_json = json.load(fp)
|
|
|
|
assert "Category1" in test_json
|
|
assert StatusType.LESSON_NUM.value in test_json["Category1"]
|
|
assert test_json["Category1"][StatusType.LESSON_NUM.value] == 3
|
|
assert "metadata" in test_json
|
|
|
|
GlobalTrainingStatus.load_state(path_dir)
|
|
restored_val = GlobalTrainingStatus.get_parameter_state(
|
|
"Category1", StatusType.LESSON_NUM
|
|
)
|
|
assert restored_val == 3
|
|
|
|
# Test unknown categories and status types (keys)
|
|
unknown_category = GlobalTrainingStatus.get_parameter_state(
|
|
"Category3", StatusType.LESSON_NUM
|
|
)
|
|
|
|
class FakeStatusType(Enum):
|
|
NOTAREALKEY = "notarealkey"
|
|
|
|
unknown_key = GlobalTrainingStatus.get_parameter_state(
|
|
"Category1", FakeStatusType.NOTAREALKEY
|
|
)
|
|
assert unknown_category is None
|
|
assert unknown_key is None
|
|
|
|
|
|
def test_model_management(tmpdir):
|
|
|
|
results_path = os.path.join(tmpdir, "results")
|
|
brain_name = "Mock_brain"
|
|
final_model_path = os.path.join(results_path, brain_name)
|
|
test_checkpoint_list = [
|
|
{
|
|
"steps": 1,
|
|
"file_path": os.path.join(final_model_path, f"{brain_name}-1.nn"),
|
|
"reward": 1.312,
|
|
"creation_time": time.time(),
|
|
},
|
|
{
|
|
"steps": 2,
|
|
"file_path": os.path.join(final_model_path, f"{brain_name}-2.nn"),
|
|
"reward": 1.912,
|
|
"creation_time": time.time(),
|
|
},
|
|
{
|
|
"steps": 3,
|
|
"file_path": os.path.join(final_model_path, f"{brain_name}-3.nn"),
|
|
"reward": 2.312,
|
|
"creation_time": time.time(),
|
|
},
|
|
]
|
|
GlobalTrainingStatus.set_parameter_state(
|
|
brain_name, StatusType.CHECKPOINTS, test_checkpoint_list
|
|
)
|
|
|
|
new_checkpoint_4 = NNCheckpoint(
|
|
4, os.path.join(final_model_path, f"{brain_name}-4.nn"), 2.678, time.time()
|
|
)
|
|
NNCheckpointManager.add_checkpoint(brain_name, new_checkpoint_4, 4)
|
|
assert len(NNCheckpointManager.get_checkpoints(brain_name)) == 4
|
|
|
|
new_checkpoint_5 = NNCheckpoint(
|
|
5, os.path.join(final_model_path, f"{brain_name}-5.nn"), 3.122, time.time()
|
|
)
|
|
NNCheckpointManager.add_checkpoint(brain_name, new_checkpoint_5, 4)
|
|
assert len(NNCheckpointManager.get_checkpoints(brain_name)) == 4
|
|
|
|
final_model_path = f"{final_model_path}.nn"
|
|
final_model_time = time.time()
|
|
current_step = 6
|
|
final_model = NNCheckpoint(current_step, final_model_path, 3.294, final_model_time)
|
|
|
|
NNCheckpointManager.track_final_checkpoint(brain_name, final_model)
|
|
assert len(NNCheckpointManager.get_checkpoints(brain_name)) == 4
|
|
|
|
check_checkpoints = GlobalTrainingStatus.saved_state[brain_name][
|
|
StatusType.CHECKPOINTS.value
|
|
]
|
|
assert check_checkpoints is not None
|
|
|
|
final_model = GlobalTrainingStatus.saved_state[StatusType.FINAL_CHECKPOINT.value]
|
|
assert final_model is not None
|
|
|
|
|
|
class StatsMetaDataTest(unittest.TestCase):
|
|
def test_metadata_compare(self):
|
|
# Test write_stats
|
|
with self.assertLogs("mlagents.trainers", level="WARNING") as cm:
|
|
default_metadata = StatusMetaData()
|
|
version_statsmetadata = StatusMetaData(mlagents_version="test")
|
|
default_metadata.check_compatibility(version_statsmetadata)
|
|
|
|
tf_version_statsmetadata = StatusMetaData(tensorflow_version="test")
|
|
default_metadata.check_compatibility(tf_version_statsmetadata)
|
|
|
|
# Assert that 2 warnings have been thrown
|
|
assert len(cm.output) == 2
|