您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
644 行
26 KiB
644 行
26 KiB
import logging
|
|
import numpy as np
|
|
from typing import Dict, List, Optional, Any, Mapping
|
|
|
|
from mlagents.tf_utils import tf
|
|
|
|
from mlagents.trainers.sac.network import SACPolicyNetwork, SACTargetNetwork
|
|
from mlagents.trainers.models import LearningRateSchedule, EncoderType, LearningModel
|
|
from mlagents.trainers.common.tf_optimizer import TFOptimizer
|
|
from mlagents.trainers.tf_policy import TFPolicy
|
|
from mlagents.trainers.buffer import AgentBuffer
|
|
from mlagents_envs.timers import timed
|
|
|
|
EPSILON = 1e-6 # Small value to avoid divide by zero
|
|
|
|
LOGGER = logging.getLogger("mlagents.trainers")
|
|
|
|
POLICY_SCOPE = ""
|
|
TARGET_SCOPE = "target_network"
|
|
|
|
|
|
class SACOptimizer(TFOptimizer):
|
|
def __init__(self, policy: TFPolicy, trainer_params: Dict[str, Any]):
|
|
"""
|
|
Takes a Unity environment and model-specific hyper-parameters and returns the
|
|
appropriate PPO agent model for the environment.
|
|
:param brain: Brain parameters used to generate specific network graph.
|
|
:param lr: Learning rate.
|
|
:param lr_schedule: Learning rate decay schedule.
|
|
:param h_size: Size of hidden layers
|
|
:param init_entcoef: Initial value for entropy coefficient. Set lower to learn faster,
|
|
set higher to explore more.
|
|
:return: a sub-class of PPOAgent tailored to the environment.
|
|
:param max_step: Total number of training steps.
|
|
:param normalize: Whether to normalize vector observation input.
|
|
:param use_recurrent: Whether to use an LSTM layer in the network.
|
|
:param num_layers: Number of hidden layers between encoded input and policy & value layers
|
|
:param tau: Strength of soft-Q update.
|
|
:param m_size: Size of brain memory.
|
|
"""
|
|
# Create the graph here to give more granular control of the TF graph to the Optimizer.
|
|
policy.create_tf_graph()
|
|
|
|
with policy.graph.as_default():
|
|
with tf.variable_scope(""):
|
|
super().__init__(policy, trainer_params)
|
|
lr = float(trainer_params["learning_rate"])
|
|
lr_schedule = LearningRateSchedule(
|
|
trainer_params.get("learning_rate_schedule", "constant")
|
|
)
|
|
self.policy = policy
|
|
self.act_size = self.policy.act_size
|
|
h_size = int(trainer_params["hidden_units"])
|
|
max_step = float(trainer_params["max_steps"])
|
|
num_layers = int(trainer_params["num_layers"])
|
|
vis_encode_type = EncoderType(
|
|
trainer_params.get("vis_encode_type", "simple")
|
|
)
|
|
self.tau = trainer_params.get("tau", 0.005)
|
|
self.burn_in_ratio = float(trainer_params.get("burn_in_ratio", 0.0))
|
|
|
|
# Non-exposed SAC parameters
|
|
self.discrete_target_entropy_scale = (
|
|
0.2
|
|
) # Roughly equal to e-greedy 0.05
|
|
self.continuous_target_entropy_scale = 1.0
|
|
|
|
self.init_entcoef = trainer_params.get("init_entcoef", 1.0)
|
|
stream_names = list(self.reward_signals.keys())
|
|
# Use to reduce "survivor bonus" when using Curiosity or GAIL.
|
|
self.gammas = [
|
|
_val["gamma"] for _val in trainer_params["reward_signals"].values()
|
|
]
|
|
self.use_dones_in_backup = {
|
|
name: tf.Variable(1.0) for name in stream_names
|
|
}
|
|
self.disable_use_dones = {
|
|
name: self.use_dones_in_backup[name].assign(0.0)
|
|
for name in stream_names
|
|
}
|
|
|
|
if num_layers < 1:
|
|
num_layers = 1
|
|
|
|
self.target_init_op: List[tf.Tensor] = []
|
|
self.target_update_op: List[tf.Tensor] = []
|
|
self.update_batch_policy: Optional[tf.Operation] = None
|
|
self.update_batch_value: Optional[tf.Operation] = None
|
|
self.update_batch_entropy: Optional[tf.Operation] = None
|
|
|
|
self.policy_network = SACPolicyNetwork(
|
|
policy=self.policy,
|
|
m_size=self.policy.m_size, # 3x policy.m_size
|
|
h_size=h_size,
|
|
normalize=self.policy.normalize,
|
|
use_recurrent=self.policy.use_recurrent,
|
|
num_layers=num_layers,
|
|
stream_names=stream_names,
|
|
vis_encode_type=vis_encode_type,
|
|
)
|
|
self.target_network = SACTargetNetwork(
|
|
policy=self.policy,
|
|
m_size=self.policy.m_size, # 1x policy.m_size
|
|
h_size=h_size,
|
|
normalize=self.policy.normalize,
|
|
use_recurrent=self.policy.use_recurrent,
|
|
num_layers=num_layers,
|
|
stream_names=stream_names,
|
|
vis_encode_type=vis_encode_type,
|
|
)
|
|
# The optimizer's m_size is 3 times the policy (Q1, Q2, and Value)
|
|
self.m_size = 3 * self.policy.m_size
|
|
self.create_inputs_and_outputs()
|
|
self.learning_rate = LearningModel.create_learning_rate(
|
|
lr_schedule, lr, self.policy.global_step, int(max_step)
|
|
)
|
|
self.create_losses(
|
|
self.policy_network.q1_heads,
|
|
self.policy_network.q2_heads,
|
|
lr,
|
|
int(max_step),
|
|
stream_names,
|
|
discrete=not self.policy.use_continuous_act,
|
|
)
|
|
self.create_sac_optimizers()
|
|
|
|
self.selected_actions = (
|
|
self.policy.selected_actions
|
|
) # For GAIL and other reward signals
|
|
if self.policy.normalize:
|
|
target_update_norm = self.target_network.copy_normalization(
|
|
self.policy.running_mean,
|
|
self.policy.running_variance,
|
|
self.policy.normalization_steps,
|
|
)
|
|
# Update the normalization of the optimizer when the policy does.
|
|
self.policy.update_normalization_op = tf.group(
|
|
[self.policy.update_normalization_op, target_update_norm]
|
|
)
|
|
|
|
self.policy.initialize_or_load()
|
|
|
|
self.stats_name_to_update_name = {
|
|
"Losses/Value Loss": "value_loss",
|
|
"Losses/Policy Loss": "policy_loss",
|
|
"Losses/Q1 Loss": "q1_loss",
|
|
"Losses/Q2 Loss": "q2_loss",
|
|
"Policy/Entropy Coeff": "entropy_coef",
|
|
}
|
|
|
|
self.update_dict = {
|
|
"value_loss": self.total_value_loss,
|
|
"policy_loss": self.policy_loss,
|
|
"q1_loss": self.q1_loss,
|
|
"q2_loss": self.q2_loss,
|
|
"entropy_coef": self.ent_coef,
|
|
"entropy": self.policy.entropy,
|
|
"update_batch": self.update_batch_policy,
|
|
"update_value": self.update_batch_value,
|
|
"update_entropy": self.update_batch_entropy,
|
|
}
|
|
|
|
# Add some stuff to inference dict from optimizer
|
|
self.policy.inference_dict["learning_rate"] = self.learning_rate
|
|
|
|
def create_inputs_and_outputs(self) -> None:
|
|
"""
|
|
Assign the higher-level SACModel's inputs and outputs to those of its policy or
|
|
target network.
|
|
"""
|
|
self.vector_in = self.policy.vector_in
|
|
self.visual_in = self.policy.visual_in
|
|
self.next_vector_in = self.target_network.vector_in
|
|
self.next_visual_in = self.target_network.visual_in
|
|
self.action_holder = self.policy.action_holder
|
|
self.sequence_length_ph = self.policy.sequence_length_ph
|
|
self.next_sequence_length_ph = self.target_network.sequence_length_ph
|
|
if not self.policy.use_continuous_act:
|
|
self.action_masks = self.policy_network.action_masks
|
|
else:
|
|
self.output_pre = self.policy_network.output_pre
|
|
|
|
# Don't use value estimate during inference. TODO: Check why PPO uses value_estimate in inference.
|
|
self.value = tf.identity(
|
|
self.policy_network.value, name="value_estimate_unused"
|
|
)
|
|
self.value_heads = self.policy_network.value_heads
|
|
self.dones_holder = tf.placeholder(
|
|
shape=[None], dtype=tf.float32, name="dones_holder"
|
|
)
|
|
|
|
if self.policy.use_recurrent:
|
|
self.memory_in = self.policy_network.memory_in
|
|
self.memory_out = self.policy_network.memory_out
|
|
if not self.policy.use_continuous_act:
|
|
self.prev_action = self.policy_network.prev_action
|
|
self.next_memory_in = self.target_network.memory_in
|
|
|
|
def create_losses(
|
|
self,
|
|
q1_streams: Dict[str, tf.Tensor],
|
|
q2_streams: Dict[str, tf.Tensor],
|
|
lr: tf.Tensor,
|
|
max_step: int,
|
|
stream_names: List[str],
|
|
discrete: bool = False,
|
|
) -> None:
|
|
"""
|
|
Creates training-specific Tensorflow ops for SAC models.
|
|
:param q1_streams: Q1 streams from policy network
|
|
:param q1_streams: Q2 streams from policy network
|
|
:param lr: Learning rate
|
|
:param max_step: Total number of training steps.
|
|
:param stream_names: List of reward stream names.
|
|
:param discrete: Whether or not to use discrete action losses.
|
|
"""
|
|
|
|
if discrete:
|
|
self.target_entropy = [
|
|
self.discrete_target_entropy_scale * np.log(i).astype(np.float32)
|
|
for i in self.act_size
|
|
]
|
|
discrete_action_probs = tf.exp(self.policy.all_log_probs)
|
|
per_action_entropy = discrete_action_probs * self.policy.all_log_probs
|
|
else:
|
|
self.target_entropy = (
|
|
-1
|
|
* self.continuous_target_entropy_scale
|
|
* np.prod(self.act_size[0]).astype(np.float32)
|
|
)
|
|
|
|
self.rewards_holders = {}
|
|
self.min_policy_qs = {}
|
|
|
|
for name in stream_names:
|
|
if discrete:
|
|
_branched_mpq1 = self.apply_as_branches(
|
|
self.policy_network.q1_pheads[name] * discrete_action_probs
|
|
)
|
|
branched_mpq1 = tf.stack(
|
|
[
|
|
tf.reduce_sum(_br, axis=1, keep_dims=True)
|
|
for _br in _branched_mpq1
|
|
]
|
|
)
|
|
_q1_p_mean = tf.reduce_mean(branched_mpq1, axis=0)
|
|
|
|
_branched_mpq2 = self.apply_as_branches(
|
|
self.policy_network.q2_pheads[name] * discrete_action_probs
|
|
)
|
|
branched_mpq2 = tf.stack(
|
|
[
|
|
tf.reduce_sum(_br, axis=1, keep_dims=True)
|
|
for _br in _branched_mpq2
|
|
]
|
|
)
|
|
_q2_p_mean = tf.reduce_mean(branched_mpq2, axis=0)
|
|
|
|
self.min_policy_qs[name] = tf.minimum(_q1_p_mean, _q2_p_mean)
|
|
else:
|
|
self.min_policy_qs[name] = tf.minimum(
|
|
self.policy_network.q1_pheads[name],
|
|
self.policy_network.q2_pheads[name],
|
|
)
|
|
|
|
rewards_holder = tf.placeholder(
|
|
shape=[None], dtype=tf.float32, name="{}_rewards".format(name)
|
|
)
|
|
self.rewards_holders[name] = rewards_holder
|
|
|
|
q1_losses = []
|
|
q2_losses = []
|
|
# Multiple q losses per stream
|
|
expanded_dones = tf.expand_dims(self.dones_holder, axis=-1)
|
|
for i, name in enumerate(stream_names):
|
|
_expanded_rewards = tf.expand_dims(self.rewards_holders[name], axis=-1)
|
|
|
|
q_backup = tf.stop_gradient(
|
|
_expanded_rewards
|
|
+ (1.0 - self.use_dones_in_backup[name] * expanded_dones)
|
|
* self.gammas[i]
|
|
* self.target_network.value_heads[name]
|
|
)
|
|
|
|
if discrete:
|
|
# We need to break up the Q functions by branch, and update them individually.
|
|
branched_q1_stream = self.apply_as_branches(
|
|
self.policy.action_oh * q1_streams[name]
|
|
)
|
|
branched_q2_stream = self.apply_as_branches(
|
|
self.policy.action_oh * q2_streams[name]
|
|
)
|
|
|
|
# Reduce each branch into scalar
|
|
branched_q1_stream = [
|
|
tf.reduce_sum(_branch, axis=1, keep_dims=True)
|
|
for _branch in branched_q1_stream
|
|
]
|
|
branched_q2_stream = [
|
|
tf.reduce_sum(_branch, axis=1, keep_dims=True)
|
|
for _branch in branched_q2_stream
|
|
]
|
|
|
|
q1_stream = tf.reduce_mean(branched_q1_stream, axis=0)
|
|
q2_stream = tf.reduce_mean(branched_q2_stream, axis=0)
|
|
|
|
else:
|
|
q1_stream = q1_streams[name]
|
|
q2_stream = q2_streams[name]
|
|
|
|
_q1_loss = 0.5 * tf.reduce_mean(
|
|
tf.to_float(self.policy.mask)
|
|
* tf.squared_difference(q_backup, q1_stream)
|
|
)
|
|
|
|
_q2_loss = 0.5 * tf.reduce_mean(
|
|
tf.to_float(self.policy.mask)
|
|
* tf.squared_difference(q_backup, q2_stream)
|
|
)
|
|
|
|
q1_losses.append(_q1_loss)
|
|
q2_losses.append(_q2_loss)
|
|
|
|
self.q1_loss = tf.reduce_mean(q1_losses)
|
|
self.q2_loss = tf.reduce_mean(q2_losses)
|
|
|
|
# Learn entropy coefficient
|
|
if discrete:
|
|
# Create a log_ent_coef for each branch
|
|
self.log_ent_coef = tf.get_variable(
|
|
"log_ent_coef",
|
|
dtype=tf.float32,
|
|
initializer=np.log([self.init_entcoef] * len(self.act_size)).astype(
|
|
np.float32
|
|
),
|
|
trainable=True,
|
|
)
|
|
else:
|
|
self.log_ent_coef = tf.get_variable(
|
|
"log_ent_coef",
|
|
dtype=tf.float32,
|
|
initializer=np.log(self.init_entcoef).astype(np.float32),
|
|
trainable=True,
|
|
)
|
|
|
|
self.ent_coef = tf.exp(self.log_ent_coef)
|
|
if discrete:
|
|
# We also have to do a different entropy and target_entropy per branch.
|
|
branched_per_action_ent = self.apply_as_branches(per_action_entropy)
|
|
branched_ent_sums = tf.stack(
|
|
[
|
|
tf.reduce_sum(_lp, axis=1, keep_dims=True) + _te
|
|
for _lp, _te in zip(branched_per_action_ent, self.target_entropy)
|
|
],
|
|
axis=1,
|
|
)
|
|
self.entropy_loss = -tf.reduce_mean(
|
|
tf.to_float(self.policy.mask)
|
|
* tf.reduce_mean(
|
|
self.log_ent_coef
|
|
* tf.squeeze(tf.stop_gradient(branched_ent_sums), axis=2),
|
|
axis=1,
|
|
)
|
|
)
|
|
|
|
# Same with policy loss, we have to do the loss per branch and average them,
|
|
# so that larger branches don't get more weight.
|
|
# The equivalent KL divergence from Eq 10 of Haarnoja et al. is also pi*log(pi) - Q
|
|
branched_q_term = self.apply_as_branches(
|
|
discrete_action_probs * self.policy_network.q1_p
|
|
)
|
|
|
|
branched_policy_loss = tf.stack(
|
|
[
|
|
tf.reduce_sum(self.ent_coef[i] * _lp - _qt, axis=1, keep_dims=True)
|
|
for i, (_lp, _qt) in enumerate(
|
|
zip(branched_per_action_ent, branched_q_term)
|
|
)
|
|
]
|
|
)
|
|
self.policy_loss = tf.reduce_mean(
|
|
tf.to_float(self.policy.mask) * tf.squeeze(branched_policy_loss)
|
|
)
|
|
|
|
# Do vbackup entropy bonus per branch as well.
|
|
branched_ent_bonus = tf.stack(
|
|
[
|
|
tf.reduce_sum(self.ent_coef[i] * _lp, axis=1, keep_dims=True)
|
|
for i, _lp in enumerate(branched_per_action_ent)
|
|
]
|
|
)
|
|
value_losses = []
|
|
for name in stream_names:
|
|
v_backup = tf.stop_gradient(
|
|
self.min_policy_qs[name]
|
|
- tf.reduce_mean(branched_ent_bonus, axis=0)
|
|
)
|
|
value_losses.append(
|
|
0.5
|
|
* tf.reduce_mean(
|
|
tf.to_float(self.policy.mask)
|
|
* tf.squared_difference(
|
|
self.policy_network.value_heads[name], v_backup
|
|
)
|
|
)
|
|
)
|
|
|
|
else:
|
|
self.entropy_loss = -tf.reduce_mean(
|
|
self.log_ent_coef
|
|
* tf.to_float(self.policy.mask)
|
|
* tf.stop_gradient(
|
|
tf.reduce_sum(
|
|
self.policy.all_log_probs + self.target_entropy,
|
|
axis=1,
|
|
keep_dims=True,
|
|
)
|
|
)
|
|
)
|
|
batch_policy_loss = tf.reduce_mean(
|
|
self.ent_coef * self.policy.all_log_probs - self.policy_network.q1_p,
|
|
axis=1,
|
|
)
|
|
self.policy_loss = tf.reduce_mean(
|
|
tf.to_float(self.policy.mask) * batch_policy_loss
|
|
)
|
|
|
|
value_losses = []
|
|
for name in stream_names:
|
|
v_backup = tf.stop_gradient(
|
|
self.min_policy_qs[name]
|
|
- tf.reduce_sum(self.ent_coef * self.policy.all_log_probs, axis=1)
|
|
)
|
|
value_losses.append(
|
|
0.5
|
|
* tf.reduce_mean(
|
|
tf.to_float(self.policy.mask)
|
|
* tf.squared_difference(
|
|
self.policy_network.value_heads[name], v_backup
|
|
)
|
|
)
|
|
)
|
|
self.value_loss = tf.reduce_mean(value_losses)
|
|
|
|
self.total_value_loss = self.q1_loss + self.q2_loss + self.value_loss
|
|
|
|
self.entropy = self.policy_network.entropy
|
|
|
|
def apply_as_branches(self, concat_logits: tf.Tensor) -> List[tf.Tensor]:
|
|
"""
|
|
Takes in a concatenated set of logits and breaks it up into a list of non-concatenated logits, one per
|
|
action branch
|
|
"""
|
|
action_idx = [0] + list(np.cumsum(self.act_size))
|
|
branches_logits = [
|
|
concat_logits[:, action_idx[i] : action_idx[i + 1]]
|
|
for i in range(len(self.act_size))
|
|
]
|
|
return branches_logits
|
|
|
|
def create_sac_optimizers(self) -> None:
|
|
"""
|
|
Creates the Adam optimizers and update ops for SAC, including
|
|
the policy, value, and entropy updates, as well as the target network update.
|
|
"""
|
|
policy_optimizer = self.create_tf_optimizer(
|
|
learning_rate=self.learning_rate, name="sac_policy_opt"
|
|
)
|
|
entropy_optimizer = self.create_tf_optimizer(
|
|
learning_rate=self.learning_rate, name="sac_entropy_opt"
|
|
)
|
|
value_optimizer = self.create_tf_optimizer(
|
|
learning_rate=self.learning_rate, name="sac_value_opt"
|
|
)
|
|
|
|
self.target_update_op = [
|
|
tf.assign(target, (1 - self.tau) * target + self.tau * source)
|
|
for target, source in zip(
|
|
self.target_network.value_vars, self.policy_network.value_vars
|
|
)
|
|
]
|
|
LOGGER.debug("value_vars")
|
|
self.print_all_vars(self.policy_network.value_vars)
|
|
LOGGER.debug("targvalue_vars")
|
|
self.print_all_vars(self.target_network.value_vars)
|
|
LOGGER.debug("critic_vars")
|
|
self.print_all_vars(self.policy_network.critic_vars)
|
|
LOGGER.debug("q_vars")
|
|
self.print_all_vars(self.policy_network.q_vars)
|
|
LOGGER.debug("policy_vars")
|
|
policy_vars = self.policy.get_trainable_variables()
|
|
self.print_all_vars(policy_vars)
|
|
|
|
self.target_init_op = [
|
|
tf.assign(target, source)
|
|
for target, source in zip(
|
|
self.target_network.value_vars, self.policy_network.value_vars
|
|
)
|
|
]
|
|
|
|
self.update_batch_policy = policy_optimizer.minimize(
|
|
self.policy_loss, var_list=policy_vars
|
|
)
|
|
|
|
# Make sure policy is updated first, then value, then entropy.
|
|
with tf.control_dependencies([self.update_batch_policy]):
|
|
self.update_batch_value = value_optimizer.minimize(
|
|
self.total_value_loss, var_list=self.policy_network.critic_vars
|
|
)
|
|
# Add entropy coefficient optimization operation
|
|
with tf.control_dependencies([self.update_batch_value]):
|
|
self.update_batch_entropy = entropy_optimizer.minimize(
|
|
self.entropy_loss, var_list=self.log_ent_coef
|
|
)
|
|
|
|
def print_all_vars(self, variables):
|
|
for _var in variables:
|
|
LOGGER.debug(_var)
|
|
|
|
@timed
|
|
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
|
|
"""
|
|
Updates model using buffer.
|
|
:param num_sequences: Number of trajectories in batch.
|
|
:param batch: Experience mini-batch.
|
|
:param update_target: Whether or not to update target value network
|
|
:param reward_signal_batches: Minibatches to use for updating the reward signals,
|
|
indexed by name. If none, don't update the reward signals.
|
|
:return: Output from update process.
|
|
"""
|
|
feed_dict = self.construct_feed_dict(self.policy, batch, num_sequences)
|
|
stats_needed = self.stats_name_to_update_name
|
|
update_stats: Dict[str, float] = {}
|
|
update_vals = self._execute_model(feed_dict, self.update_dict)
|
|
for stat_name, update_name in stats_needed.items():
|
|
update_stats[stat_name] = update_vals[update_name]
|
|
# Update target network. By default, target update happens at every policy update.
|
|
self.sess.run(self.target_update_op)
|
|
return update_stats
|
|
|
|
def update_reward_signals(
|
|
self, reward_signal_minibatches: Mapping[str, Dict], num_sequences: int
|
|
) -> Dict[str, float]:
|
|
"""
|
|
Only update the reward signals.
|
|
:param reward_signal_batches: Minibatches to use for updating the reward signals,
|
|
indexed by name. If none, don't update the reward signals.
|
|
"""
|
|
# Collect feed dicts for all reward signals.
|
|
feed_dict: Dict[tf.Tensor, Any] = {}
|
|
update_dict: Dict[str, tf.Tensor] = {}
|
|
update_stats: Dict[str, float] = {}
|
|
stats_needed: Dict[str, str] = {}
|
|
if reward_signal_minibatches:
|
|
self.add_reward_signal_dicts(
|
|
feed_dict,
|
|
update_dict,
|
|
stats_needed,
|
|
reward_signal_minibatches,
|
|
num_sequences,
|
|
)
|
|
update_vals = self._execute_model(feed_dict, update_dict)
|
|
for stat_name, update_name in stats_needed.items():
|
|
update_stats[stat_name] = update_vals[update_name]
|
|
return update_stats
|
|
|
|
def add_reward_signal_dicts(
|
|
self,
|
|
feed_dict: Dict[tf.Tensor, Any],
|
|
update_dict: Dict[str, tf.Tensor],
|
|
stats_needed: Dict[str, str],
|
|
reward_signal_minibatches: Mapping[str, Dict],
|
|
num_sequences: int,
|
|
) -> None:
|
|
"""
|
|
Adds the items needed for reward signal updates to the feed_dict and stats_needed dict.
|
|
:param feed_dict: Feed dict needed update
|
|
:param update_dit: Update dict that needs update
|
|
:param stats_needed: Stats needed to get from the update.
|
|
:param reward_signal_minibatches: Minibatches to use for updating the reward signals,
|
|
indexed by name.
|
|
"""
|
|
for name, r_batch in reward_signal_minibatches.items():
|
|
feed_dict.update(
|
|
self.reward_signals[name].prepare_update(
|
|
self.policy, r_batch, num_sequences
|
|
)
|
|
)
|
|
update_dict.update(self.reward_signals[name].update_dict)
|
|
stats_needed.update(self.reward_signals[name].stats_name_to_update_name)
|
|
|
|
def construct_feed_dict(
|
|
self, policy: TFPolicy, batch: AgentBuffer, num_sequences: int
|
|
) -> Dict[tf.Tensor, Any]:
|
|
"""
|
|
Builds the feed dict for updating the SAC model.
|
|
:param model: The model to update. May be different when, e.g. using multi-GPU.
|
|
:param batch: Mini-batch to use to update.
|
|
:param num_sequences: Number of LSTM sequences in batch.
|
|
"""
|
|
# Do an optional burn-in for memories
|
|
num_burn_in = int(self.burn_in_ratio * self.policy.sequence_length)
|
|
burn_in_mask = np.ones((self.policy.sequence_length), dtype=np.float32)
|
|
burn_in_mask[range(0, num_burn_in)] = 0
|
|
burn_in_mask = np.tile(burn_in_mask, num_sequences)
|
|
feed_dict = {
|
|
policy.batch_size_ph: num_sequences,
|
|
policy.sequence_length_ph: self.policy.sequence_length,
|
|
self.next_sequence_length_ph: self.policy.sequence_length,
|
|
self.policy.mask_input: batch["masks"] * burn_in_mask,
|
|
}
|
|
for name in self.reward_signals:
|
|
feed_dict[self.rewards_holders[name]] = batch["{}_rewards".format(name)]
|
|
|
|
if self.policy.use_continuous_act:
|
|
feed_dict[policy.action_holder] = batch["actions"]
|
|
else:
|
|
feed_dict[policy.action_holder] = batch["actions"]
|
|
if self.policy.use_recurrent:
|
|
feed_dict[policy.prev_action] = batch["prev_action"]
|
|
feed_dict[policy.action_masks] = batch["action_mask"]
|
|
if self.policy.use_vec_obs:
|
|
feed_dict[policy.vector_in] = batch["vector_obs"]
|
|
feed_dict[self.next_vector_in] = batch["next_vector_in"]
|
|
if self.policy.vis_obs_size > 0:
|
|
for i, _ in enumerate(policy.visual_in):
|
|
_obs = batch["visual_obs%d" % i]
|
|
feed_dict[policy.visual_in[i]] = _obs
|
|
for i, _ in enumerate(self.next_visual_in):
|
|
_obs = batch["next_visual_obs%d" % i]
|
|
feed_dict[self.next_visual_in[i]] = _obs
|
|
if self.policy.use_recurrent:
|
|
feed_dict[policy.memory_in] = [
|
|
batch["memory"][i]
|
|
for i in range(0, len(batch["memory"]), self.policy.sequence_length)
|
|
]
|
|
feed_dict[self.policy_network.memory_in] = self._make_zero_mem(
|
|
self.m_size, batch.num_experiences
|
|
)
|
|
feed_dict[self.target_network.memory_in] = self._make_zero_mem(
|
|
self.m_size // 3, batch.num_experiences
|
|
)
|
|
feed_dict[self.dones_holder] = batch["done"]
|
|
return feed_dict
|