Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

430 行
15 KiB

# # Unity ML-Agents Toolkit
import logging
import argparse
from multiprocessing import Process, Queue
import os
import glob
import shutil
import numpy as np
from typing import Any, Callable, Optional, List, NamedTuple
from mlagents.trainers.trainer_controller import TrainerController
from mlagents.trainers.exception import TrainerError
from mlagents.trainers.meta_curriculum import MetaCurriculum
from mlagents.trainers.trainer_util import load_config, TrainerFactory
from mlagents.envs.environment import UnityEnvironment
from mlagents.envs.sampler_class import SamplerManager
from mlagents.envs.exception import SamplerException
from mlagents.envs.base_unity_environment import BaseUnityEnvironment
from mlagents.envs.subprocess_env_manager import SubprocessEnvManager
class CommandLineOptions(NamedTuple):
debug: bool
num_runs: int
seed: int
env_path: str
run_id: str
load_model: bool
train_model: bool
save_freq: int
keep_checkpoints: int
base_port: int
num_envs: int
curriculum_folder: Optional[str]
lesson: int
slow: bool
no_graphics: bool
multi_gpu: bool # ?
trainer_config_path: str
sampler_file_path: Optional[str]
docker_target_name: Optional[str]
env_args: Optional[List[str]]
cpu: bool
@property
def fast_simulation(self) -> bool:
return not self.slow
@staticmethod
def from_argparse(args: Any) -> "CommandLineOptions":
return CommandLineOptions(**vars(args))
def parse_command_line(argv: Optional[List[str]] = None) -> CommandLineOptions:
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("trainer_config_path")
parser.add_argument(
"--env", default=None, dest="env_path", help="Name of the Unity executable "
)
parser.add_argument(
"--curriculum",
default=None,
dest="curriculum_folder",
help="Curriculum json directory for environment",
)
parser.add_argument(
"--sampler",
default=None,
dest="sampler_file_path",
help="Reset parameter yaml file for environment",
)
parser.add_argument(
"--keep-checkpoints",
default=5,
type=int,
help="How many model checkpoints to keep",
)
parser.add_argument(
"--lesson", default=0, type=int, help="Start learning from this lesson"
)
parser.add_argument(
"--load",
default=False,
dest="load_model",
action="store_true",
help="Whether to load the model or randomly initialize",
)
parser.add_argument(
"--run-id",
default="ppo",
help="The directory name for model and summary statistics",
)
parser.add_argument(
"--num-runs", default=1, type=int, help="Number of concurrent training sessions"
)
parser.add_argument(
"--save-freq", default=50000, type=int, help="Frequency at which to save model"
)
parser.add_argument(
"--seed", default=-1, type=int, help="Random seed used for training"
)
parser.add_argument(
"--slow", action="store_true", help="Whether to run the game at training speed"
)
parser.add_argument(
"--train",
default=False,
dest="train_model",
action="store_true",
help="Whether to train model, or only run inference",
)
parser.add_argument(
"--base-port",
default=5005,
type=int,
help="Base port for environment communication",
)
parser.add_argument(
"--num-envs",
default=1,
type=int,
help="Number of parallel environments to use for training",
)
parser.add_argument(
"--docker-target-name",
default=None,
dest="docker_target_name",
help="Docker volume to store training-specific files",
)
parser.add_argument(
"--no-graphics",
default=False,
action="store_true",
help="Whether to run the environment in no-graphics mode",
)
parser.add_argument(
"--debug",
default=False,
action="store_true",
help="Whether to run ML-Agents in debug mode with detailed logging",
)
parser.add_argument(
"--multi-gpu",
default=False,
action="store_true",
help="Setting this flag enables the use of multiple GPU's (if available) during training",
)
parser.add_argument(
"--env-args",
default=None,
nargs=argparse.REMAINDER,
help="Arguments passed to the Unity executable.",
)
parser.add_argument(
"--cpu", default=False, action="store_true", help="Run with CPU only"
)
args = parser.parse_args(argv)
return CommandLineOptions.from_argparse(args)
def run_training(
sub_id: int, run_seed: int, options: CommandLineOptions, process_queue: Queue
) -> None:
"""
Launches training session.
:param process_queue: Queue used to send signal back to main.
:param sub_id: Unique id for training session.
:param options: parsed command line arguments
:param run_seed: Random seed used for training.
:param run_options: Command line arguments for training.
"""
# Docker Parameters
trainer_config_path = options.trainer_config_path
curriculum_folder = options.curriculum_folder
# Recognize and use docker volume if one is passed as an argument
if not options.docker_target_name:
model_path = "./models/{run_id}-{sub_id}".format(
run_id=options.run_id, sub_id=sub_id
)
summaries_dir = "./summaries"
else:
trainer_config_path = "/{docker_target_name}/{trainer_config_path}".format(
docker_target_name=options.docker_target_name,
trainer_config_path=trainer_config_path,
)
if curriculum_folder is not None:
curriculum_folder = "/{docker_target_name}/{curriculum_folder}".format(
docker_target_name=options.docker_target_name,
curriculum_folder=curriculum_folder,
)
model_path = "/{docker_target_name}/models/{run_id}-{sub_id}".format(
docker_target_name=options.docker_target_name,
run_id=options.run_id,
sub_id=sub_id,
)
summaries_dir = "/{docker_target_name}/summaries".format(
docker_target_name=options.docker_target_name
)
trainer_config = load_config(trainer_config_path)
port = options.base_port + (sub_id * options.num_envs)
if options.env_path is None:
port = 5004 # This is the in Editor Training Port
env_factory = create_environment_factory(
options.env_path,
options.docker_target_name,
options.no_graphics,
run_seed,
port,
options.env_args,
)
env = SubprocessEnvManager(env_factory, options.num_envs)
maybe_meta_curriculum = try_create_meta_curriculum(
curriculum_folder, env, options.lesson
)
sampler_manager, resampling_interval = create_sampler_manager(
options.sampler_file_path, env.reset_parameters, run_seed
)
trainer_factory = TrainerFactory(
trainer_config,
summaries_dir,
options.run_id,
model_path,
options.keep_checkpoints,
options.train_model,
options.load_model,
run_seed,
maybe_meta_curriculum,
options.multi_gpu,
)
# Create controller and begin training.
tc = TrainerController(
trainer_factory,
model_path,
summaries_dir,
options.run_id + "-" + str(sub_id),
options.save_freq,
maybe_meta_curriculum,
options.train_model,
run_seed,
options.fast_simulation,
sampler_manager,
resampling_interval,
)
# Signal that environment has been launched.
process_queue.put(True)
# Begin training
tc.start_learning(env)
def create_sampler_manager(sampler_file_path, env_reset_params, run_seed=None):
sampler_config = None
resample_interval = None
if sampler_file_path is not None:
sampler_config = load_config(sampler_file_path)
if "resampling-interval" in sampler_config:
# Filter arguments that do not exist in the environment
resample_interval = sampler_config.pop("resampling-interval")
if (resample_interval <= 0) or (not isinstance(resample_interval, int)):
raise SamplerException(
"Specified resampling-interval is not valid. Please provide"
" a positive integer value for resampling-interval"
)
else:
raise SamplerException(
"Resampling interval was not specified in the sampler file."
" Please specify it with the 'resampling-interval' key in the sampler config file."
)
sampler_manager = SamplerManager(sampler_config, run_seed)
return sampler_manager, resample_interval
def try_create_meta_curriculum(
curriculum_folder: Optional[str], env: SubprocessEnvManager, lesson: int
) -> Optional[MetaCurriculum]:
if curriculum_folder is None:
return None
else:
meta_curriculum = MetaCurriculum(curriculum_folder, env.reset_parameters)
# TODO: Should be able to start learning at different lesson numbers
# for each curriculum.
meta_curriculum.set_all_curriculums_to_lesson_num(lesson)
return meta_curriculum
def prepare_for_docker_run(docker_target_name, env_path):
for f in glob.glob(
"/{docker_target_name}/*".format(docker_target_name=docker_target_name)
):
if env_path in f:
try:
b = os.path.basename(f)
if os.path.isdir(f):
shutil.copytree(f, "/ml-agents/{b}".format(b=b))
else:
src_f = "/{docker_target_name}/{b}".format(
docker_target_name=docker_target_name, b=b
)
dst_f = "/ml-agents/{b}".format(b=b)
shutil.copyfile(src_f, dst_f)
os.chmod(dst_f, 0o775) # Make executable
except Exception as e:
logging.getLogger("mlagents.trainers").info(e)
env_path = "/ml-agents/{env_path}".format(env_path=env_path)
return env_path
def create_environment_factory(
env_path: str,
docker_target_name: Optional[str],
no_graphics: bool,
seed: Optional[int],
start_port: int,
env_args: Optional[List[str]],
) -> Callable[[int], BaseUnityEnvironment]:
if env_path is not None:
# Strip out executable extensions if passed
env_path = (
env_path.strip()
.replace(".app", "")
.replace(".exe", "")
.replace(".x86_64", "")
.replace(".x86", "")
)
docker_training = docker_target_name is not None
if docker_training and env_path is not None:
# Comments for future maintenance:
# Some OS/VM instances (e.g. COS GCP Image) mount filesystems
# with COS flag which prevents execution of the Unity scene,
# to get around this, we will copy the executable into the
# container.
# Navigate in docker path and find env_path and copy it.
env_path = prepare_for_docker_run(docker_target_name, env_path)
seed_count = 10000
seed_pool = [np.random.randint(0, seed_count) for _ in range(seed_count)]
def create_unity_environment(worker_id: int) -> UnityEnvironment:
env_seed = seed
if not env_seed:
env_seed = seed_pool[worker_id % len(seed_pool)]
return UnityEnvironment(
file_name=env_path,
worker_id=worker_id,
seed=env_seed,
docker_training=docker_training,
no_graphics=no_graphics,
base_port=start_port,
args=env_args,
)
return create_unity_environment
def main():
try:
print(
"""
▄▄▄▓▓▓▓
╓▓▓▓▓▓▓█▓▓▓▓▓
,▄▄▄m▀▀▀' ,▓▓▓▀▓▓▄ ▓▓▓ ▓▓▌
▄▓▓▓▀' ▄▓▓▀ ▓▓▓ ▄▄ ▄▄ ,▄▄ ▄▄▄▄ ,▄▄ ▄▓▓▌▄ ▄▄▄ ,▄▄
▄▓▓▓▀ ▄▓▓▀ ▐▓▓▌ ▓▓▌ ▐▓▓ ▐▓▓▓▀▀▀▓▓▌ ▓▓▓ ▀▓▓▌▀ ^▓▓▌ ╒▓▓▌
▄▓▓▓▓▓▄▄▄▄▄▄▄▄▓▓▓ ▓▀ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▄ ▓▓▌
▀▓▓▓▓▀▀▀▀▀▀▀▀▀▀▓▓▄ ▓▓ ▓▓▌ ▐▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▌ ▐▓▓▐▓▓
^█▓▓▓ ▀▓▓▄ ▐▓▓▌ ▓▓▓▓▄▓▓▓▓ ▐▓▓ ▓▓▓ ▓▓▓ ▓▓▓▄ ▓▓▓▓`
'▀▓▓▓▄ ^▓▓▓ ▓▓▓ └▀▀▀▀ ▀▀ ^▀▀ `▀▀ `▀▀ '▀▀ ▐▓▓▌
▀▀▀▀▓▄▄▄ ▓▓▓▓▓▓, ▓▓▓▓▀
`▀█▓▓▓▓▓▓▓▓▓▌
¬`▀▀▀█▓
"""
)
except Exception:
print("\n\n\tUnity Technologies\n")
options = parse_command_line()
trainer_logger = logging.getLogger("mlagents.trainers")
env_logger = logging.getLogger("mlagents.envs")
trainer_logger.info(options)
if options.debug:
trainer_logger.setLevel("DEBUG")
env_logger.setLevel("DEBUG")
if options.env_path is None and options.num_runs > 1:
raise TrainerError(
"It is not possible to launch more than one concurrent training session "
"when training from the editor."
)
jobs = []
run_seed = options.seed
if options.cpu:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
if options.num_runs == 1:
if options.seed == -1:
run_seed = np.random.randint(0, 10000)
run_training(0, run_seed, options, Queue())
else:
for i in range(options.num_runs):
if options.seed == -1:
run_seed = np.random.randint(0, 10000)
process_queue = Queue()
p = Process(target=run_training, args=(i, run_seed, options, process_queue))
jobs.append(p)
p.start()
# Wait for signal that environment has successfully launched
while process_queue.get() is not True:
continue
# Wait for jobs to complete. Otherwise we'll have an extra
# unhandled KeyboardInterrupt if we end early.
try:
for job in jobs:
job.join()
except KeyboardInterrupt:
pass
# For python debugger to directly run this script
if __name__ == "__main__":
main()