Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

127 行
4.8 KiB

using System.Collections.Generic;
using NUnit.Framework;
using Unity.Barracuda;
using Unity.MLAgents.Actuators;
using Unity.MLAgents.Inference;
namespace Unity.MLAgents.Tests
{
public class EditModeTestInternalBrainTensorApplier
{
class TestAgent : Agent
{
}
[Test]
public void Construction()
{
var actionSpec = new ActionSpec();
var alloc = new TensorCachingAllocator();
var mem = new Dictionary<int, List<float>>();
var tensorGenerator = new TensorApplier(actionSpec, 0, alloc, mem);
Assert.IsNotNull(tensorGenerator);
alloc.Dispose();
}
[Test]
public void ApplyContinuousActionOutput()
{
var actionSpec = ActionSpec.MakeContinuous(3);
var inputTensor = new TensorProxy()
{
shape = new long[] { 2, 3 },
data = new Tensor(2, 3, new float[] { 1, 2, 3, 4, 5, 6 })
};
var applier = new ContinuousActionOutputApplier(actionSpec);
var agentIds = new List<int>() { 0, 1 };
// Dictionary from AgentId to Action
var actionDict = new Dictionary<int, ActionBuffers>() { { 0, ActionBuffers.Empty }, { 1, ActionBuffers.Empty } };
applier.Apply(inputTensor, agentIds, actionDict);
Assert.AreEqual(actionDict[0].ContinuousActions[0], 1);
Assert.AreEqual(actionDict[0].ContinuousActions[1], 2);
Assert.AreEqual(actionDict[0].ContinuousActions[2], 3);
Assert.AreEqual(actionDict[1].ContinuousActions[0], 4);
Assert.AreEqual(actionDict[1].ContinuousActions[1], 5);
Assert.AreEqual(actionDict[1].ContinuousActions[2], 6);
}
[Test]
public void ApplyDiscreteActionOutput()
{
var actionSpec = ActionSpec.MakeDiscrete(2, 3);
var inputTensor = new TensorProxy()
{
shape = new long[] { 2, 5 },
data = new Tensor(
2,
5,
new[] { 0.5f, 22.5f, 0.1f, 5f, 1f, 4f, 5f, 6f, 7f, 8f })
};
var alloc = new TensorCachingAllocator();
var applier = new DiscreteActionOutputApplier(actionSpec, 0, alloc);
var agentIds = new List<int>() { 0, 1 };
// Dictionary from AgentId to Action
var actionDict = new Dictionary<int, ActionBuffers>() { { 0, ActionBuffers.Empty }, { 1, ActionBuffers.Empty } };
applier.Apply(inputTensor, agentIds, actionDict);
Assert.AreEqual(actionDict[0].DiscreteActions[0], 1);
Assert.AreEqual(actionDict[0].DiscreteActions[1], 1);
Assert.AreEqual(actionDict[1].DiscreteActions[0], 1);
Assert.AreEqual(actionDict[1].DiscreteActions[1], 2);
alloc.Dispose();
}
[Test]
public void ApplyHybridActionOutput()
{
var actionSpec = new ActionSpec(3, new int[] { 2, 3 });
var continuousInputTensor = new TensorProxy()
{
shape = new long[] { 2, 3 },
data = new Tensor(2, 3, new float[] { 1, 2, 3, 4, 5, 6 })
};
var discreteInputTensor = new TensorProxy()
{
shape = new long[] { 2, 8 },
data = new Tensor(
2,
5,
new[] { 0.5f, 22.5f, 0.1f, 5f, 1f, 4f, 5f, 6f, 7f, 8f })
};
var continuousApplier = new ContinuousActionOutputApplier(actionSpec);
var alloc = new TensorCachingAllocator();
var discreteApplier = new DiscreteActionOutputApplier(actionSpec, 0, alloc);
var agentIds = new List<int>() { 0, 1 };
// Dictionary from AgentId to Action
var actionDict = new Dictionary<int, ActionBuffers>() { { 0, ActionBuffers.Empty }, { 1, ActionBuffers.Empty } };
continuousApplier.Apply(continuousInputTensor, agentIds, actionDict);
discreteApplier.Apply(discreteInputTensor, agentIds, actionDict);
Assert.AreEqual(actionDict[0].ContinuousActions[0], 1);
Assert.AreEqual(actionDict[0].ContinuousActions[1], 2);
Assert.AreEqual(actionDict[0].ContinuousActions[2], 3);
Assert.AreEqual(actionDict[0].DiscreteActions[0], 1);
Assert.AreEqual(actionDict[0].DiscreteActions[1], 1);
Assert.AreEqual(actionDict[1].ContinuousActions[0], 4);
Assert.AreEqual(actionDict[1].ContinuousActions[1], 5);
Assert.AreEqual(actionDict[1].ContinuousActions[2], 6);
Assert.AreEqual(actionDict[1].DiscreteActions[0], 1);
Assert.AreEqual(actionDict[1].DiscreteActions[1], 2);
alloc.Dispose();
}
}
}