Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

364 行
13 KiB

from unittest import mock
import pytest
from typing import List
import mlagents.trainers.tests.mock_brain as mb
import numpy as np
from mlagents.trainers.agent_processor import (
AgentProcessor,
AgentManager,
AgentManagerQueue,
)
from mlagents.trainers.action_info import ActionInfo
from mlagents.trainers.torch.action_log_probs import LogProbsTuple
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.stats import StatsReporter, StatsSummary
from mlagents.trainers.behavior_id_utils import get_global_agent_id
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod
from mlagents.trainers.tests.dummy_config import create_observation_specs_with_shapes
from mlagents_envs.base_env import ActionSpec, ActionTuple
def create_mock_policy():
mock_policy = mock.Mock()
mock_policy.reward_signals = {}
mock_policy.retrieve_previous_memories.return_value = np.zeros(
(1, 1), dtype=np.float32
)
mock_policy.retrieve_previous_action.return_value = np.zeros((1, 1), dtype=np.int32)
return mock_policy
def _create_action_info(num_agents: int, agent_ids: List[str]) -> ActionInfo:
fake_action_outputs = {
"action": ActionTuple(
continuous=np.array([[0.1]] * num_agents, dtype=np.float32)
),
"entropy": np.array([1.0], dtype=np.float32),
"learning_rate": 1.0,
"log_probs": LogProbsTuple(
continuous=np.array([[0.1]] * num_agents, dtype=np.float32)
),
}
fake_action_info = ActionInfo(
action=ActionTuple(continuous=np.array([[0.1]] * num_agents, dtype=np.float32)),
env_action=ActionTuple(
continuous=np.array([[0.1]] * num_agents, dtype=np.float32)
),
outputs=fake_action_outputs,
agent_ids=agent_ids,
)
return fake_action_info
@pytest.mark.parametrize("num_vis_obs", [0, 1, 2], ids=["vec", "1 viz", "2 viz"])
def test_agentprocessor(num_vis_obs):
policy = create_mock_policy()
tqueue = mock.Mock()
name_behavior_id = "test_brain_name"
processor = AgentProcessor(
policy,
name_behavior_id,
max_trajectory_length=5,
stats_reporter=StatsReporter("testcat"),
)
mock_decision_steps, mock_terminal_steps = mb.create_mock_steps(
num_agents=2,
observation_specs=create_observation_specs_with_shapes(
[(8,)] + num_vis_obs * [(84, 84, 3)]
),
action_spec=ActionSpec.create_continuous(2),
)
fake_action_info = _create_action_info(2, mock_decision_steps.agent_id)
processor.publish_trajectory_queue(tqueue)
# This is like the initial state after the env reset
processor.add_experiences(
mock_decision_steps, mock_terminal_steps, 0, ActionInfo.empty()
)
for _ in range(5):
processor.add_experiences(
mock_decision_steps, mock_terminal_steps, 0, fake_action_info
)
# Assert that two trajectories have been added to the Trainer
assert len(tqueue.put.call_args_list) == 2
# Assert that the trajectory is of length 5
trajectory = tqueue.put.call_args_list[0][0][0]
assert len(trajectory.steps) == 5
# Make sure ungrouped agents don't have team obs
for step in trajectory.steps:
assert len(step.group_status) == 0
# Assert that the AgentProcessor is empty
assert len(processor._experience_buffers[0]) == 0
# Test empty steps
mock_decision_steps, mock_terminal_steps = mb.create_mock_steps(
num_agents=0,
observation_specs=create_observation_specs_with_shapes(
[(8,)] + num_vis_obs * [(84, 84, 3)]
),
action_spec=ActionSpec.create_continuous(2),
)
processor.add_experiences(
mock_decision_steps, mock_terminal_steps, 0, ActionInfo.empty()
)
# Assert that the AgentProcessor is still empty
assert len(processor._experience_buffers[0]) == 0
def test_group_statuses():
policy = create_mock_policy()
tqueue = mock.Mock()
name_behavior_id = "test_brain_name"
processor = AgentProcessor(
policy,
name_behavior_id,
max_trajectory_length=5,
stats_reporter=StatsReporter("testcat"),
)
mock_decision_steps, mock_terminal_steps = mb.create_mock_steps(
num_agents=4,
observation_specs=create_observation_specs_with_shapes([(8,)]),
action_spec=ActionSpec.create_continuous(2),
grouped=True,
)
fake_action_info = _create_action_info(4, mock_decision_steps.agent_id)
processor.publish_trajectory_queue(tqueue)
# This is like the initial state after the env reset
processor.add_experiences(
mock_decision_steps, mock_terminal_steps, 0, ActionInfo.empty()
)
for _ in range(2):
processor.add_experiences(
mock_decision_steps, mock_terminal_steps, 0, fake_action_info
)
# Make terminal steps for some dead agents
mock_decision_steps_2, mock_terminal_steps_2 = mb.create_mock_steps(
num_agents=2,
observation_specs=create_observation_specs_with_shapes([(8,)]),
action_spec=ActionSpec.create_continuous(2),
done=True,
grouped=True,
)
processor.add_experiences(
mock_decision_steps_2, mock_terminal_steps_2, 0, fake_action_info
)
fake_action_info = _create_action_info(4, mock_decision_steps.agent_id)
for _ in range(3):
processor.add_experiences(
mock_decision_steps, mock_terminal_steps, 0, fake_action_info
)
# Assert that four trajectories have been added to the Trainer
assert len(tqueue.put.call_args_list) == 4
# Last trajectory should be the longest
trajectory = tqueue.put.call_args_list[0][0][-1]
# Make sure trajectory has the right Groupmate Experiences
for step in trajectory.steps[0:3]:
assert len(step.group_status) == 3
# After 2 agents has died
for step in trajectory.steps[3:]:
assert len(step.group_status) == 1
def test_agent_deletion():
policy = create_mock_policy()
tqueue = mock.Mock()
name_behavior_id = "test_brain_name"
processor = AgentProcessor(
policy,
name_behavior_id,
max_trajectory_length=5,
stats_reporter=StatsReporter("testcat"),
)
fake_action_outputs = {
"action": ActionTuple(continuous=np.array([[0.1]], dtype=np.float32)),
"entropy": np.array([1.0], dtype=np.float32),
"learning_rate": 1.0,
"log_probs": LogProbsTuple(continuous=np.array([[0.1]], dtype=np.float32)),
}
mock_decision_step, mock_terminal_step = mb.create_mock_steps(
num_agents=1,
observation_specs=create_observation_specs_with_shapes([(8,)]),
action_spec=ActionSpec.create_continuous(2),
)
mock_done_decision_step, mock_done_terminal_step = mb.create_mock_steps(
num_agents=1,
observation_specs=create_observation_specs_with_shapes([(8,)]),
action_spec=ActionSpec.create_continuous(2),
done=True,
)
fake_action_info = ActionInfo(
action=ActionTuple(continuous=np.array([[0.1]], dtype=np.float32)),
env_action=ActionTuple(continuous=np.array([[0.1]], dtype=np.float32)),
outputs=fake_action_outputs,
agent_ids=mock_decision_step.agent_id,
)
processor.publish_trajectory_queue(tqueue)
# This is like the initial state after the env reset
processor.add_experiences(
mock_decision_step, mock_terminal_step, 0, ActionInfo.empty()
)
# Run 3 trajectories, with different workers (to simulate different agents)
add_calls = []
remove_calls = []
for _ep in range(3):
for _ in range(5):
processor.add_experiences(
mock_decision_step, mock_terminal_step, _ep, fake_action_info
)
add_calls.append(
mock.call([get_global_agent_id(_ep, 0)], fake_action_outputs["action"])
)
processor.add_experiences(
mock_done_decision_step, mock_done_terminal_step, _ep, fake_action_info
)
# Make sure we don't add experiences from the prior agents after the done
remove_calls.append(mock.call([get_global_agent_id(_ep, 0)]))
policy.save_previous_action.assert_has_calls(add_calls)
policy.remove_previous_action.assert_has_calls(remove_calls)
# Check that there are no experiences left
assert len(processor._experience_buffers.keys()) == 0
assert len(processor._last_take_action_outputs.keys()) == 0
assert len(processor._episode_steps.keys()) == 0
assert len(processor._episode_rewards.keys()) == 0
assert len(processor._last_step_result.keys()) == 0
# check that steps with immediate dones don't add to dicts
processor.add_experiences(
mock_done_decision_step, mock_done_terminal_step, 0, ActionInfo.empty()
)
assert len(processor._experience_buffers.keys()) == 0
assert len(processor._last_take_action_outputs.keys()) == 0
assert len(processor._episode_steps.keys()) == 0
assert len(processor._episode_rewards.keys()) == 0
assert len(processor._last_step_result.keys()) == 0
def test_end_episode():
policy = create_mock_policy()
tqueue = mock.Mock()
name_behavior_id = "test_brain_name"
processor = AgentProcessor(
policy,
name_behavior_id,
max_trajectory_length=5,
stats_reporter=StatsReporter("testcat"),
)
fake_action_outputs = {
"action": ActionTuple(continuous=np.array([[0.1]], dtype=np.float32)),
"entropy": np.array([1.0], dtype=np.float32),
"learning_rate": 1.0,
"log_probs": LogProbsTuple(continuous=np.array([[0.1]], dtype=np.float32)),
}
mock_decision_step, mock_terminal_step = mb.create_mock_steps(
num_agents=1,
observation_specs=create_observation_specs_with_shapes([(8,)]),
action_spec=ActionSpec.create_continuous(2),
)
fake_action_info = ActionInfo(
action=ActionTuple(continuous=np.array([[0.1]], dtype=np.float32)),
env_action=ActionTuple(continuous=np.array([[0.1]], dtype=np.float32)),
outputs=fake_action_outputs,
agent_ids=mock_decision_step.agent_id,
)
processor.publish_trajectory_queue(tqueue)
# This is like the initial state after the env reset
processor.add_experiences(
mock_decision_step, mock_terminal_step, 0, ActionInfo.empty()
)
# Run 3 trajectories, with different workers (to simulate different agents)
remove_calls = []
for _ep in range(3):
remove_calls.append(mock.call([get_global_agent_id(_ep, 0)]))
for _ in range(5):
processor.add_experiences(
mock_decision_step, mock_terminal_step, _ep, fake_action_info
)
# Make sure we don't add experiences from the prior agents after the done
# Call end episode
processor.end_episode()
# Check that we removed every agent
policy.remove_previous_action.assert_has_calls(remove_calls)
# Check that there are no experiences left
assert len(processor._experience_buffers.keys()) == 0
assert len(processor._last_take_action_outputs.keys()) == 0
assert len(processor._episode_steps.keys()) == 0
assert len(processor._episode_rewards.keys()) == 0
def test_agent_manager():
policy = create_mock_policy()
name_behavior_id = "test_brain_name"
manager = AgentManager(
policy,
name_behavior_id,
max_trajectory_length=5,
stats_reporter=StatsReporter("testcat"),
)
assert len(manager._trajectory_queues) == 1
assert isinstance(manager._trajectory_queues[0], AgentManagerQueue)
def test_agent_manager_queue():
queue = AgentManagerQueue(behavior_id="testbehavior")
trajectory = mock.Mock(spec=Trajectory)
assert queue.empty()
queue.put(trajectory)
assert not queue.empty()
queue_traj = queue.get_nowait()
assert isinstance(queue_traj, Trajectory)
assert queue.empty()
def test_agent_manager_stats():
policy = mock.Mock()
stats_reporter = StatsReporter("FakeCategory")
writer = mock.Mock()
stats_reporter.add_writer(writer)
manager = AgentManager(policy, "MyBehavior", stats_reporter)
all_env_stats = [
{
"averaged": [(1.0, StatsAggregationMethod.AVERAGE)],
"most_recent": [(2.0, StatsAggregationMethod.MOST_RECENT)],
"summed": [(3.1, StatsAggregationMethod.SUM)],
},
{
"averaged": [(3.0, StatsAggregationMethod.AVERAGE)],
"most_recent": [(4.0, StatsAggregationMethod.MOST_RECENT)],
"summed": [(1.1, StatsAggregationMethod.SUM)],
},
]
for env_stats in all_env_stats:
manager.record_environment_stats(env_stats, worker_id=0)
expected_stats = {
"averaged": StatsSummary(
full_dist=[1.0, 3.0], aggregation_method=StatsAggregationMethod.AVERAGE
),
"most_recent": StatsSummary(
full_dist=[4.0], aggregation_method=StatsAggregationMethod.MOST_RECENT
),
"summed": StatsSummary(
full_dist=[3.1, 1.1], aggregation_method=StatsAggregationMethod.SUM
),
}
stats_reporter.write_stats(123)
writer.write_stats.assert_any_call("FakeCategory", expected_stats, 123)
# clean up our Mock from the global list
StatsReporter.writers.remove(writer)