Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

25 行
831 B

from typing import NamedTuple, Any, Dict, List
import numpy as np
from mlagents_envs.base_env import AgentId
ActionInfoOutputs = Dict[str, np.ndarray]
class ActionInfo(NamedTuple):
"""
A NamedTuple containing actions and related quantities to the policy forward
pass. Additionally contains the agent ids in the corresponding DecisionStep
:param action: The action output of the policy
:param env_action: The possibly clipped action to be executed in the environment
:param outputs: Dict of all quantities associated with the policy forward pass
:param agent_ids: List of int agent ids in DecisionStep
"""
action: Any
env_action: Any
outputs: ActionInfoOutputs
agent_ids: List[AgentId]
@staticmethod
def empty() -> "ActionInfo":
return ActionInfo([], [], {}, [])