您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
135 行
4.0 KiB
135 行
4.0 KiB
using System;
|
|
using NUnit.Framework;
|
|
using Unity.Barracuda;
|
|
using Unity.MLAgents.Inference;
|
|
using Unity.MLAgents.Inference.Utils;
|
|
|
|
namespace Unity.MLAgents.Tests
|
|
{
|
|
public class TensorUtilsTest
|
|
{
|
|
[TestCase(4, TestName = "TestResizeTensor_4D")]
|
|
[TestCase(8, TestName = "TestResizeTensor_8D")]
|
|
public void TestResizeTensor(int dimension)
|
|
{
|
|
var alloc = new TensorCachingAllocator();
|
|
var height = 64;
|
|
var width = 84;
|
|
var channels = 3;
|
|
|
|
// Set shape to {1, ..., height, width, channels}
|
|
// For 8D, the ... are all 1's
|
|
var shape = new long[dimension];
|
|
for (var i = 0; i < dimension; i++)
|
|
{
|
|
shape[i] = 1;
|
|
}
|
|
|
|
shape[dimension - 3] = height;
|
|
shape[dimension - 2] = width;
|
|
shape[dimension - 1] = channels;
|
|
|
|
var intShape = new int[dimension];
|
|
for (var i = 0; i < dimension; i++)
|
|
{
|
|
intShape[i] = (int)shape[i];
|
|
}
|
|
|
|
var tensorProxy = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.Integer,
|
|
data = new Tensor(intShape),
|
|
shape = shape,
|
|
};
|
|
|
|
// These should be invariant after the resize.
|
|
Assert.AreEqual(height, tensorProxy.data.shape.height);
|
|
Assert.AreEqual(width, tensorProxy.data.shape.width);
|
|
Assert.AreEqual(channels, tensorProxy.data.shape.channels);
|
|
|
|
TensorUtils.ResizeTensor(tensorProxy, 42, alloc);
|
|
|
|
Assert.AreEqual(height, tensorProxy.shape[dimension - 3]);
|
|
Assert.AreEqual(width, tensorProxy.shape[dimension - 2]);
|
|
Assert.AreEqual(channels, tensorProxy.shape[dimension - 1]);
|
|
|
|
Assert.AreEqual(height, tensorProxy.data.shape.height);
|
|
Assert.AreEqual(width, tensorProxy.data.shape.width);
|
|
Assert.AreEqual(channels, tensorProxy.data.shape.channels);
|
|
|
|
alloc.Dispose();
|
|
}
|
|
|
|
[Test]
|
|
public void RandomNormalTestTensorInt()
|
|
{
|
|
var rn = new RandomNormal(1982);
|
|
var t = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.Integer
|
|
};
|
|
|
|
Assert.Throws<NotImplementedException>(
|
|
() => TensorUtils.FillTensorWithRandomNormal(t, rn));
|
|
}
|
|
|
|
[Test]
|
|
public void RandomNormalTestDataNull()
|
|
{
|
|
var rn = new RandomNormal(1982);
|
|
var t = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.FloatingPoint
|
|
};
|
|
|
|
Assert.Throws<ArgumentNullException>(
|
|
() => TensorUtils.FillTensorWithRandomNormal(t, rn));
|
|
}
|
|
|
|
[Test]
|
|
public void RandomNormalTestTensor()
|
|
{
|
|
var rn = new RandomNormal(1982);
|
|
var t = new TensorProxy
|
|
{
|
|
valueType = TensorProxy.TensorType.FloatingPoint,
|
|
data = new Tensor(1, 3, 4, 2)
|
|
};
|
|
|
|
TensorUtils.FillTensorWithRandomNormal(t, rn);
|
|
|
|
var reference = new[]
|
|
{
|
|
-0.4315872f,
|
|
-1.11074f,
|
|
0.3414804f,
|
|
-1.130287f,
|
|
0.1413168f,
|
|
-0.5105762f,
|
|
-0.3027347f,
|
|
-0.2645015f,
|
|
1.225356f,
|
|
-0.02921959f,
|
|
0.3716498f,
|
|
-1.092338f,
|
|
0.9561074f,
|
|
-0.5018106f,
|
|
1.167787f,
|
|
-0.7763879f,
|
|
-0.07491868f,
|
|
0.5396146f,
|
|
-0.1377991f,
|
|
0.3331701f,
|
|
0.06144788f,
|
|
0.9520947f,
|
|
1.088157f,
|
|
-1.177194f,
|
|
};
|
|
|
|
for (var i = 0; i < t.data.length; i++)
|
|
{
|
|
Assert.AreEqual(t.data[i], reference[i], 0.0001);
|
|
}
|
|
}
|
|
}
|
|
}
|