Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

123 行
4.2 KiB

# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/unity_output.proto
import sys
_b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode("latin1"))
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import (
unity_rl_output_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__output__pb2,
)
from mlagents.envs.communicator_objects import (
unity_rl_initialization_output_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__initialization__output__pb2,
)
DESCRIPTOR = _descriptor.FileDescriptor(
name="mlagents/envs/communicator_objects/unity_output.proto",
package="communicator_objects",
syntax="proto3",
serialized_options=_b("\252\002\034MLAgents.CommunicatorObjects"),
serialized_pb=_b(
'\n5mlagents/envs/communicator_objects/unity_output.proto\x12\x14\x63ommunicator_objects\x1a\x38mlagents/envs/communicator_objects/unity_rl_output.proto\x1aGmlagents/envs/communicator_objects/unity_rl_initialization_output.proto"\x9a\x01\n\x0bUnityOutput\x12\x36\n\trl_output\x18\x01 \x01(\x0b\x32#.communicator_objects.UnityRLOutput\x12S\n\x18rl_initialization_output\x18\x02 \x01(\x0b\x32\x31.communicator_objects.UnityRLInitializationOutputB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3'
),
dependencies=[
mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__output__pb2.DESCRIPTOR,
mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__initialization__output__pb2.DESCRIPTOR,
],
)
_UNITYOUTPUT = _descriptor.Descriptor(
name="UnityOutput",
full_name="communicator_objects.UnityOutput",
filename=None,
file=DESCRIPTOR,
containing_type=None,
fields=[
_descriptor.FieldDescriptor(
name="rl_output",
full_name="communicator_objects.UnityOutput.rl_output",
index=0,
number=1,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
_descriptor.FieldDescriptor(
name="rl_initialization_output",
full_name="communicator_objects.UnityOutput.rl_initialization_output",
index=1,
number=2,
type=11,
cpp_type=10,
label=1,
has_default_value=False,
default_value=None,
message_type=None,
enum_type=None,
containing_type=None,
is_extension=False,
extension_scope=None,
serialized_options=None,
file=DESCRIPTOR,
),
],
extensions=[],
nested_types=[],
enum_types=[],
serialized_options=None,
is_extendable=False,
syntax="proto3",
extension_ranges=[],
oneofs=[],
serialized_start=211,
serialized_end=365,
)
_UNITYOUTPUT.fields_by_name[
"rl_output"
].message_type = (
mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__output__pb2._UNITYRLOUTPUT
)
_UNITYOUTPUT.fields_by_name[
"rl_initialization_output"
].message_type = (
mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__initialization__output__pb2._UNITYRLINITIALIZATIONOUTPUT
)
DESCRIPTOR.message_types_by_name["UnityOutput"] = _UNITYOUTPUT
_sym_db.RegisterFileDescriptor(DESCRIPTOR)
UnityOutput = _reflection.GeneratedProtocolMessageType(
"UnityOutput",
(_message.Message,),
dict(
DESCRIPTOR=_UNITYOUTPUT,
__module__="mlagents.envs.communicator_objects.unity_output_pb2"
# @@protoc_insertion_point(class_scope:communicator_objects.UnityOutput)
),
)
_sym_db.RegisterMessage(UnityOutput)
DESCRIPTOR._options = None
# @@protoc_insertion_point(module_scope)