您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
212 行
7.7 KiB
212 行
7.7 KiB
from mlagents.torch_utils import torch
|
|
from typing import Tuple, Optional, List
|
|
from mlagents.trainers.torch.layers import LinearEncoder, Initialization, linear_layer
|
|
|
|
|
|
class MultiHeadAttention(torch.nn.Module):
|
|
"""
|
|
Multi Head Attention module. We do not use the regular Torch implementation since
|
|
Barracuda does not support some operators it uses.
|
|
Takes as input to the forward method 3 tensors:
|
|
- query: of dimensions (batch_size, number_of_queries, embedding_size)
|
|
- key: of dimensions (batch_size, number_of_keys, embedding_size)
|
|
- value: of dimensions (batch_size, number_of_keys, embedding_size)
|
|
The forward method will return 2 tensors:
|
|
- The output: (batch_size, number_of_queries, embedding_size)
|
|
- The attention matrix: (batch_size, num_heads, number_of_queries, number_of_keys)
|
|
"""
|
|
|
|
NEG_INF = -1e6
|
|
|
|
def __init__(self, embedding_size: int, num_heads: int):
|
|
super().__init__()
|
|
self.n_heads = num_heads
|
|
self.head_size: int = embedding_size // self.n_heads
|
|
self.embedding_size: int = self.head_size * self.n_heads
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
n_q: int,
|
|
n_k: int,
|
|
key_mask: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
b = -1 # the batch size
|
|
|
|
query = query.reshape(
|
|
b, n_q, self.n_heads, self.head_size
|
|
) # (b, n_q, h, emb / h)
|
|
key = key.reshape(b, n_k, self.n_heads, self.head_size) # (b, n_k, h, emb / h)
|
|
value = value.reshape(
|
|
b, n_k, self.n_heads, self.head_size
|
|
) # (b, n_k, h, emb / h)
|
|
|
|
query = query.permute([0, 2, 1, 3]) # (b, h, n_q, emb / h)
|
|
# The next few lines are equivalent to : key.permute([0, 2, 3, 1])
|
|
# This is a hack, ONNX will compress two permute operations and
|
|
# Barracuda will not like seeing `permute([0,2,3,1])`
|
|
key = key.permute([0, 2, 1, 3]) # (b, h, emb / h, n_k)
|
|
key -= 1
|
|
key += 1
|
|
key = key.permute([0, 1, 3, 2]) # (b, h, emb / h, n_k)
|
|
|
|
qk = torch.matmul(query, key) # (b, h, n_q, n_k)
|
|
|
|
if key_mask is None:
|
|
qk = qk / (self.embedding_size ** 0.5)
|
|
else:
|
|
key_mask = key_mask.reshape(b, 1, 1, n_k)
|
|
qk = (1 - key_mask) * qk / (
|
|
self.embedding_size ** 0.5
|
|
) + key_mask * self.NEG_INF
|
|
|
|
att = torch.softmax(qk, dim=3) # (b, h, n_q, n_k)
|
|
|
|
value = value.permute([0, 2, 1, 3]) # (b, h, n_k, emb / h)
|
|
value_attention = torch.matmul(att, value) # (b, h, n_q, emb / h)
|
|
|
|
value_attention = value_attention.permute([0, 2, 1, 3]) # (b, n_q, h, emb / h)
|
|
value_attention = value_attention.reshape(
|
|
b, n_q, self.embedding_size
|
|
) # (b, n_q, emb)
|
|
|
|
return value_attention, att
|
|
|
|
|
|
class EntityEmbeddings(torch.nn.Module):
|
|
"""
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
x_self_size: int,
|
|
entity_sizes: List[int],
|
|
entity_num_max_elements: List[int],
|
|
embedding_size: int,
|
|
concat_self: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.self_size: int = x_self_size
|
|
self.entity_sizes: List[int] = entity_sizes
|
|
self.entity_num_max_elements: List[int] = entity_num_max_elements
|
|
self.concat_self: bool = concat_self
|
|
# If not concatenating self, input to encoder is just entity size
|
|
if not concat_self:
|
|
self.self_size = 0
|
|
self.ent_encoders = torch.nn.ModuleList(
|
|
[
|
|
LinearEncoder(
|
|
self.self_size + ent_size,
|
|
1,
|
|
embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / embedding_size) ** 0.5,
|
|
)
|
|
for ent_size in self.entity_sizes
|
|
]
|
|
)
|
|
|
|
def forward(
|
|
self, x_self: torch.Tensor, entities: List[torch.Tensor]
|
|
) -> Tuple[torch.Tensor, int]:
|
|
if self.concat_self:
|
|
# Concatenate all observations with self
|
|
self_and_ent: List[torch.Tensor] = []
|
|
for num_entities, ent in zip(self.entity_num_max_elements, entities):
|
|
expanded_self = x_self.reshape(-1, 1, self.self_size)
|
|
expanded_self = torch.cat([expanded_self] * num_entities, dim=1)
|
|
self_and_ent.append(torch.cat([expanded_self, ent], dim=2))
|
|
else:
|
|
self_and_ent = entities
|
|
# Encode and concatenate entites
|
|
encoded_entities = torch.cat(
|
|
[ent_encoder(x) for ent_encoder, x in zip(self.ent_encoders, self_and_ent)],
|
|
dim=1,
|
|
)
|
|
return encoded_entities
|
|
|
|
@staticmethod
|
|
def get_masks(observations: List[torch.Tensor]) -> List[torch.Tensor]:
|
|
"""
|
|
Takes a List of Tensors and returns a List of mask Tensor with 1 if the input was
|
|
all zeros (on dimension 2) and 0 otherwise. This is used in the Attention
|
|
layer to mask the padding observations.
|
|
"""
|
|
with torch.no_grad():
|
|
# Generate the masking tensors for each entities tensor (mask only if all zeros)
|
|
key_masks: List[torch.Tensor] = [
|
|
(torch.sum(ent ** 2, axis=2) < 0.01).type(torch.FloatTensor)
|
|
for ent in observations
|
|
]
|
|
return key_masks
|
|
|
|
|
|
class ResidualSelfAttention(torch.nn.Module):
|
|
"""
|
|
A simple architecture inspired from https://arxiv.org/pdf/1909.07528.pdf that uses
|
|
multi head self attention to encode information about a "Self" and a list of
|
|
relevant "Entities".
|
|
"""
|
|
|
|
EPSILON = 1e-7
|
|
|
|
def __init__(
|
|
self,
|
|
embedding_size: int,
|
|
entity_num_max_elements: List[int],
|
|
num_heads: int = 4,
|
|
):
|
|
super().__init__()
|
|
self.entity_num_max_elements: List[int] = entity_num_max_elements
|
|
self.max_num_ent = sum(entity_num_max_elements)
|
|
self.attention = MultiHeadAttention(
|
|
num_heads=num_heads, embedding_size=embedding_size
|
|
)
|
|
|
|
self.fc_q = linear_layer(
|
|
embedding_size,
|
|
embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / embedding_size) ** 0.5,
|
|
)
|
|
self.fc_k = linear_layer(
|
|
embedding_size,
|
|
embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / embedding_size) ** 0.5,
|
|
)
|
|
self.fc_v = linear_layer(
|
|
embedding_size,
|
|
embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / embedding_size) ** 0.5,
|
|
)
|
|
self.fc_out = linear_layer(
|
|
embedding_size,
|
|
embedding_size,
|
|
kernel_init=Initialization.Normal,
|
|
kernel_gain=(0.125 / embedding_size) ** 0.5,
|
|
)
|
|
|
|
def forward(self, inp: torch.Tensor, key_masks: List[torch.Tensor]) -> torch.Tensor:
|
|
# Gather the maximum number of entities information
|
|
mask = torch.cat(key_masks, dim=1)
|
|
# Feed to self attention
|
|
query = self.fc_q(inp) # (b, n_q, emb)
|
|
key = self.fc_k(inp) # (b, n_k, emb)
|
|
value = self.fc_v(inp) # (b, n_k, emb)
|
|
output, _ = self.attention(
|
|
query, key, value, self.max_num_ent, self.max_num_ent, mask
|
|
)
|
|
# Residual
|
|
output = self.fc_out(output) + inp
|
|
# Average Pooling
|
|
numerator = torch.sum(
|
|
output * (1 - mask).reshape(-1, self.max_num_ent, 1), dim=1
|
|
)
|
|
denominator = torch.sum(1 - mask, dim=1, keepdim=True) + self.EPSILON
|
|
output = numerator / denominator
|
|
# Residual between x_self and the output of the module
|
|
return output
|