您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
669 行
28 KiB
669 行
28 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
using Barracuda;
|
|
using MLAgents.Sensors;
|
|
using MLAgents.Policies;
|
|
|
|
namespace MLAgents.Inference
|
|
{
|
|
/// <summary>
|
|
/// Prepares the Tensors for the Learning Brain and exposes a list of failed checks if Model
|
|
/// and BrainParameters are incompatible.
|
|
/// </summary>
|
|
internal class BarracudaModelParamLoader
|
|
{
|
|
enum ModelActionType
|
|
{
|
|
Unknown,
|
|
Discrete,
|
|
Continuous
|
|
}
|
|
|
|
const long k_ApiVersion = 2;
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor inputs that are expected to be present in the Model.
|
|
/// </summary>
|
|
/// <param name="model">
|
|
/// The Barracuda engine model for loading static parameters.
|
|
/// </param>
|
|
/// <returns>TensorProxy IEnumerable with the expected Tensor inputs.</returns>
|
|
public static IReadOnlyList<TensorProxy> GetInputTensors(Model model)
|
|
{
|
|
var tensors = new List<TensorProxy>();
|
|
|
|
if (model == null)
|
|
return tensors;
|
|
|
|
foreach (var input in model.inputs)
|
|
{
|
|
tensors.Add(new TensorProxy
|
|
{
|
|
name = input.name,
|
|
valueType = TensorProxy.TensorType.FloatingPoint,
|
|
data = null,
|
|
shape = input.shape.Select(i => (long)i).ToArray()
|
|
});
|
|
}
|
|
|
|
foreach (var mem in model.memories)
|
|
{
|
|
tensors.Add(new TensorProxy
|
|
{
|
|
name = mem.input,
|
|
valueType = TensorProxy.TensorType.FloatingPoint,
|
|
data = null,
|
|
shape = TensorUtils.TensorShapeFromBarracuda(mem.shape)
|
|
});
|
|
}
|
|
|
|
tensors.Sort((el1, el2) => el1.name.CompareTo(el2.name));
|
|
|
|
return tensors;
|
|
}
|
|
|
|
public static int GetNumVisualInputs(Model model)
|
|
{
|
|
var count = 0;
|
|
if (model == null)
|
|
return count;
|
|
|
|
foreach (var input in model.inputs)
|
|
{
|
|
if (input.shape.Length == 4)
|
|
{
|
|
if (input.name.StartsWith(TensorNames.VisualObservationPlaceholderPrefix))
|
|
{
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates the Tensor outputs that are expected to be present in the Model.
|
|
/// </summary>
|
|
/// <param name="model">
|
|
/// The Barracuda engine model for loading static parameters
|
|
/// </param>
|
|
/// <returns>TensorProxy IEnumerable with the expected Tensor outputs</returns>
|
|
public static string[] GetOutputNames(Model model)
|
|
{
|
|
var names = new List<string>();
|
|
|
|
if (model == null)
|
|
{
|
|
return names.ToArray();
|
|
}
|
|
|
|
names.Add(TensorNames.ActionOutput);
|
|
|
|
var memory = (int)model.GetTensorByName(TensorNames.MemorySize)[0];
|
|
if (memory > 0)
|
|
{
|
|
foreach (var mem in model.memories)
|
|
{
|
|
names.Add(mem.output);
|
|
}
|
|
}
|
|
|
|
names.Sort();
|
|
|
|
return names.ToArray();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Factory for the ModelParamLoader : Creates a ModelParamLoader and runs the checks
|
|
/// on it.
|
|
/// </summary>
|
|
/// <param name="model">
|
|
/// The Barracuda engine model for loading static parameters
|
|
/// </param>
|
|
/// <param name="brainParameters">
|
|
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
|
|
/// </param>
|
|
/// <param name="sensorComponents">Attached sensor components</param>
|
|
/// <returns>The list the error messages of the checks that failed</returns>
|
|
public static IEnumerable<string> CheckModel(Model model, BrainParameters brainParameters,
|
|
SensorComponent[] sensorComponents, BehaviorType behaviorType = BehaviorType.Default)
|
|
{
|
|
List<string> failedModelChecks = new List<string>();
|
|
if (model == null)
|
|
{
|
|
var errorMsg = "There is no model for this Brain; cannot run inference. ";
|
|
if (behaviorType == BehaviorType.InferenceOnly)
|
|
{
|
|
errorMsg += "Either assign a model, or change to a different Behavior Type.";
|
|
}
|
|
else
|
|
{
|
|
errorMsg += "(But can still train)";
|
|
}
|
|
failedModelChecks.Add(errorMsg);
|
|
return failedModelChecks;
|
|
}
|
|
|
|
var modelApiVersion = (int)model.GetTensorByName(TensorNames.VersionNumber)[0];
|
|
var memorySize = (int)model.GetTensorByName(TensorNames.MemorySize)[0];
|
|
var isContinuousInt = (int)model.GetTensorByName(TensorNames.IsContinuousControl)[0];
|
|
var isContinuous = GetActionType(isContinuousInt);
|
|
var actionSize = (int)model.GetTensorByName(TensorNames.ActionOutputShape)[0];
|
|
if (modelApiVersion == -1)
|
|
{
|
|
failedModelChecks.Add(
|
|
"Model was not trained using the right version of ML-Agents. " +
|
|
"Cannot use this model.");
|
|
return failedModelChecks;
|
|
}
|
|
if (modelApiVersion != k_ApiVersion)
|
|
{
|
|
failedModelChecks.Add(
|
|
$"Version of the trainer the model was trained with ({modelApiVersion}) " +
|
|
$"is not compatible with the Brain's version ({k_ApiVersion}).");
|
|
return failedModelChecks;
|
|
}
|
|
|
|
failedModelChecks.AddRange(
|
|
CheckIntScalarPresenceHelper(new Dictionary<string, int>()
|
|
{
|
|
{TensorNames.MemorySize, memorySize},
|
|
{TensorNames.IsContinuousControl, isContinuousInt},
|
|
{TensorNames.ActionOutputShape, actionSize}
|
|
})
|
|
);
|
|
failedModelChecks.AddRange(
|
|
CheckInputTensorPresence(model, brainParameters, memorySize, isContinuous, sensorComponents)
|
|
);
|
|
failedModelChecks.AddRange(
|
|
CheckOutputTensorPresence(model, memorySize))
|
|
;
|
|
failedModelChecks.AddRange(
|
|
CheckInputTensorShape(model, brainParameters, sensorComponents)
|
|
);
|
|
failedModelChecks.AddRange(
|
|
CheckOutputTensorShape(model, brainParameters, isContinuous, actionSize)
|
|
);
|
|
return failedModelChecks;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts the integer value in the model corresponding to the type of control to a
|
|
/// ModelActionType.
|
|
/// </summary>
|
|
/// <param name="isContinuousInt">
|
|
/// The integer value in the model indicating the type of control
|
|
/// </param>
|
|
/// <returns>The equivalent ModelActionType</returns>
|
|
static ModelActionType GetActionType(int isContinuousInt)
|
|
{
|
|
ModelActionType isContinuous;
|
|
switch (isContinuousInt)
|
|
{
|
|
case 0:
|
|
isContinuous = ModelActionType.Discrete;
|
|
break;
|
|
case 1:
|
|
isContinuous = ModelActionType.Continuous;
|
|
break;
|
|
default:
|
|
isContinuous = ModelActionType.Unknown;
|
|
break;
|
|
}
|
|
return isContinuous;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Given a Dictionary of node names to int values, create checks if the values have the
|
|
/// invalid value of -1.
|
|
/// </summary>
|
|
/// <param name="requiredScalarFields"> Mapping from node names to int values</param>
|
|
/// <returns>The list the error messages of the checks that failed</returns>
|
|
static IEnumerable<string> CheckIntScalarPresenceHelper(
|
|
Dictionary<string, int> requiredScalarFields)
|
|
{
|
|
var failedModelChecks = new List<string>();
|
|
foreach (var field in requiredScalarFields)
|
|
{
|
|
if (field.Value == -1)
|
|
{
|
|
failedModelChecks.Add($"Missing node in the model provided : {field.Key}");
|
|
}
|
|
}
|
|
return failedModelChecks;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates failed checks that correspond to inputs expected by the model that are not
|
|
/// present in the BrainParameters.
|
|
/// </summary>
|
|
/// <param name="model">
|
|
/// The Barracuda engine model for loading static parameters
|
|
/// </param>
|
|
/// <param name="brainParameters">
|
|
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
|
|
/// </param>
|
|
/// <param name="memory">
|
|
/// The memory size that the model is expecting.
|
|
/// </param>
|
|
/// <param name="isContinuous">
|
|
/// Whether the model is expecting continuous or discrete control.
|
|
/// </param>
|
|
/// <param name="sensorComponents">Array of attached sensor components</param>
|
|
/// <returns>
|
|
/// A IEnumerable of string corresponding to the failed input presence checks.
|
|
/// </returns>
|
|
static IEnumerable<string> CheckInputTensorPresence(
|
|
Model model,
|
|
BrainParameters brainParameters,
|
|
int memory,
|
|
ModelActionType isContinuous,
|
|
SensorComponent[] sensorComponents
|
|
)
|
|
{
|
|
var failedModelChecks = new List<string>();
|
|
var tensorsNames = GetInputTensors(model).Select(x => x.name).ToList();
|
|
|
|
// If there is no Vector Observation Input but the Brain Parameters expect one.
|
|
if ((brainParameters.VectorObservationSize != 0) &&
|
|
(!tensorsNames.Contains(TensorNames.VectorObservationPlaceholder)))
|
|
{
|
|
failedModelChecks.Add(
|
|
"The model does not contain a Vector Observation Placeholder Input. " +
|
|
"You must set the Vector Observation Space Size to 0.");
|
|
}
|
|
|
|
// If there are not enough Visual Observation Input compared to what the
|
|
// sensors expect.
|
|
var visObsIndex = 0;
|
|
for (var sensorIndex = 0; sensorIndex < sensorComponents.Length; sensorIndex++)
|
|
{
|
|
var sensor = sensorComponents[sensorIndex];
|
|
if (!sensor.IsVisual())
|
|
{
|
|
continue;
|
|
}
|
|
if (!tensorsNames.Contains(
|
|
TensorNames.VisualObservationPlaceholderPrefix + visObsIndex))
|
|
{
|
|
failedModelChecks.Add(
|
|
"The model does not contain a Visual Observation Placeholder Input " +
|
|
$"for sensor component {visObsIndex} ({sensor.GetType().Name}).");
|
|
}
|
|
|
|
visObsIndex++;
|
|
}
|
|
|
|
var expectedVisualObs = GetNumVisualInputs(model);
|
|
// Check if there's not enough visual sensors (too many would be handled above)
|
|
if (expectedVisualObs > visObsIndex)
|
|
{
|
|
failedModelChecks.Add(
|
|
$"The model expects {expectedVisualObs} visual inputs," +
|
|
$" but only found {visObsIndex} visual sensors."
|
|
);
|
|
}
|
|
|
|
// If the model has a non-negative memory size but requires a recurrent input
|
|
if (memory > 0)
|
|
{
|
|
if (!tensorsNames.Any(x => x.EndsWith("_h")) ||
|
|
!tensorsNames.Any(x => x.EndsWith("_c")))
|
|
{
|
|
failedModelChecks.Add(
|
|
"The model does not contain a Recurrent Input Node but has memory_size.");
|
|
}
|
|
}
|
|
|
|
// If the model uses discrete control but does not have an input for action masks
|
|
if (isContinuous == ModelActionType.Discrete)
|
|
{
|
|
if (!tensorsNames.Contains(TensorNames.ActionMaskPlaceholder))
|
|
{
|
|
failedModelChecks.Add(
|
|
"The model does not contain an Action Mask but is using Discrete Control.");
|
|
}
|
|
}
|
|
return failedModelChecks;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates failed checks that correspond to outputs expected by the model that are not
|
|
/// present in the BrainParameters.
|
|
/// </summary>
|
|
/// <param name="model">
|
|
/// The Barracuda engine model for loading static parameters
|
|
/// </param>
|
|
/// <param name="memory">The memory size that the model is expecting/</param>
|
|
/// <returns>
|
|
/// A IEnumerable of string corresponding to the failed output presence checks.
|
|
/// </returns>
|
|
static IEnumerable<string> CheckOutputTensorPresence(Model model, int memory)
|
|
{
|
|
var failedModelChecks = new List<string>();
|
|
// If there is no Action Output.
|
|
if (!model.outputs.Contains(TensorNames.ActionOutput))
|
|
{
|
|
failedModelChecks.Add("The model does not contain an Action Output Node.");
|
|
}
|
|
|
|
// If there is no Recurrent Output but the model is Recurrent.
|
|
if (memory > 0)
|
|
{
|
|
var memOutputs = model.memories.Select(x => x.output).ToList();
|
|
|
|
if (!memOutputs.Any(x => x.EndsWith("_h")) ||
|
|
!memOutputs.Any(x => x.EndsWith("_c")))
|
|
{
|
|
failedModelChecks.Add(
|
|
"The model does not contain a Recurrent Output Node but has memory_size.");
|
|
}
|
|
}
|
|
return failedModelChecks;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Checks that the shape of the visual observation input placeholder is the same as the corresponding sensor.
|
|
/// </summary>
|
|
/// <param name="tensorProxy">The tensor that is expected by the model</param>
|
|
/// <param name="sensorComponent">The sensor that produces the visual observation.</param>
|
|
/// <returns>
|
|
/// If the Check failed, returns a string containing information about why the
|
|
/// check failed. If the check passed, returns null.
|
|
/// </returns>
|
|
static string CheckVisualObsShape(
|
|
TensorProxy tensorProxy, SensorComponent sensorComponent)
|
|
{
|
|
var shape = sensorComponent.GetObservationShape();
|
|
var heightBp = shape[0];
|
|
var widthBp = shape[1];
|
|
var pixelBp = shape[2];
|
|
var heightT = tensorProxy.shape[1];
|
|
var widthT = tensorProxy.shape[2];
|
|
var pixelT = tensorProxy.shape[3];
|
|
if ((widthBp != widthT) || (heightBp != heightT) || (pixelBp != pixelT))
|
|
{
|
|
return $"The visual Observation of the model does not match. " +
|
|
$"Received TensorProxy of shape [?x{widthBp}x{heightBp}x{pixelBp}] but " +
|
|
$"was expecting [?x{widthT}x{heightT}x{pixelT}].";
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates failed checks that correspond to inputs shapes incompatibilities between
|
|
/// the model and the BrainParameters.
|
|
/// </summary>
|
|
/// <param name="model">
|
|
/// The Barracuda engine model for loading static parameters
|
|
/// </param>
|
|
/// <param name="brainParameters">
|
|
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
|
|
/// </param>
|
|
/// <param name="sensorComponents">Attached sensors</param>
|
|
/// <returns>The list the error messages of the checks that failed</returns>
|
|
static IEnumerable<string> CheckInputTensorShape(
|
|
Model model, BrainParameters brainParameters, SensorComponent[] sensorComponents)
|
|
{
|
|
var failedModelChecks = new List<string>();
|
|
var tensorTester =
|
|
new Dictionary<string, Func<BrainParameters, TensorProxy, SensorComponent[], string>>()
|
|
{
|
|
{TensorNames.VectorObservationPlaceholder, CheckVectorObsShape},
|
|
{TensorNames.PreviousActionPlaceholder, CheckPreviousActionShape},
|
|
{TensorNames.RandomNormalEpsilonPlaceholder, ((bp, tensor, scs) => null)},
|
|
{TensorNames.ActionMaskPlaceholder, ((bp, tensor, scs) => null)},
|
|
{TensorNames.SequenceLengthPlaceholder, ((bp, tensor, scs) => null)},
|
|
{TensorNames.RecurrentInPlaceholder, ((bp, tensor, scs) => null)},
|
|
};
|
|
|
|
foreach (var mem in model.memories)
|
|
{
|
|
tensorTester[mem.input] = ((bp, tensor, scs) => null);
|
|
}
|
|
|
|
var visObsIndex = 0;
|
|
for (var sensorIndex = 0; sensorIndex < sensorComponents.Length; sensorIndex++)
|
|
{
|
|
var sensorComponent = sensorComponents[sensorIndex];
|
|
if (!sensorComponent.IsVisual())
|
|
{
|
|
continue;
|
|
}
|
|
tensorTester[TensorNames.VisualObservationPlaceholderPrefix + visObsIndex] =
|
|
(bp, tensor, scs) => CheckVisualObsShape(tensor, sensorComponent);
|
|
visObsIndex++;
|
|
}
|
|
|
|
// If the model expects an input but it is not in this list
|
|
foreach (var tensor in GetInputTensors(model))
|
|
{
|
|
if (!tensorTester.ContainsKey(tensor.name))
|
|
{
|
|
if (!tensor.name.Contains("visual_observation"))
|
|
{
|
|
failedModelChecks.Add(
|
|
"Model requires an unknown input named : " + tensor.name);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
var tester = tensorTester[tensor.name];
|
|
var error = tester.Invoke(brainParameters, tensor, sensorComponents);
|
|
if (error != null)
|
|
{
|
|
failedModelChecks.Add(error);
|
|
}
|
|
}
|
|
}
|
|
return failedModelChecks;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Checks that the shape of the Vector Observation input placeholder is the same in the
|
|
/// model and in the Brain Parameters.
|
|
/// </summary>
|
|
/// <param name="brainParameters">
|
|
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
|
|
/// </param>
|
|
/// <param name="tensorProxy">The tensor that is expected by the model</param>
|
|
/// <param name="sensorComponents">Array of attached sensor components</param>
|
|
/// <returns>
|
|
/// If the Check failed, returns a string containing information about why the
|
|
/// check failed. If the check passed, returns null.
|
|
/// </returns>
|
|
static string CheckVectorObsShape(
|
|
BrainParameters brainParameters, TensorProxy tensorProxy, SensorComponent[] sensorComponents)
|
|
{
|
|
var vecObsSizeBp = brainParameters.VectorObservationSize;
|
|
var numStackedVector = brainParameters.NumStackedVectorObservations;
|
|
var totalVecObsSizeT = tensorProxy.shape[tensorProxy.shape.Length - 1];
|
|
|
|
var totalVectorSensorSize = 0;
|
|
foreach (var sensorComp in sensorComponents)
|
|
{
|
|
if (sensorComp.IsVector())
|
|
{
|
|
totalVectorSensorSize += sensorComp.GetObservationShape()[0];
|
|
}
|
|
}
|
|
|
|
if (vecObsSizeBp * numStackedVector + totalVectorSensorSize != totalVecObsSizeT)
|
|
{
|
|
var sensorSizes = "";
|
|
foreach (var sensorComp in sensorComponents)
|
|
{
|
|
if (sensorComp.IsVector())
|
|
{
|
|
var vecSize = sensorComp.GetObservationShape()[0];
|
|
if (sensorSizes.Length == 0)
|
|
{
|
|
sensorSizes = $"[{vecSize}";
|
|
}
|
|
else
|
|
{
|
|
sensorSizes += $", {vecSize}";
|
|
}
|
|
}
|
|
}
|
|
|
|
sensorSizes += "]";
|
|
return $"Vector Observation Size of the model does not match. Was expecting {totalVecObsSizeT} " +
|
|
$"but received {vecObsSizeBp} x {numStackedVector} vector observations and " +
|
|
$"SensorComponent sizes: {sensorSizes}.";
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Checks that the shape of the Previous Vector Action input placeholder is the same in the
|
|
/// model and in the Brain Parameters.
|
|
/// </summary>
|
|
/// <param name="brainParameters">
|
|
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
|
|
/// </param>
|
|
/// <param name="tensorProxy"> The tensor that is expected by the model</param>
|
|
/// <param name="sensorComponents">Array of attached sensor components</param>
|
|
/// <returns>If the Check failed, returns a string containing information about why the
|
|
/// check failed. If the check passed, returns null.</returns>
|
|
static string CheckPreviousActionShape(
|
|
BrainParameters brainParameters, TensorProxy tensorProxy, SensorComponent[] sensorComponents)
|
|
{
|
|
var numberActionsBp = brainParameters.VectorActionSize.Length;
|
|
var numberActionsT = tensorProxy.shape[tensorProxy.shape.Length - 1];
|
|
if (numberActionsBp != numberActionsT)
|
|
{
|
|
return "Previous Action Size of the model does not match. " +
|
|
$"Received {numberActionsBp} but was expecting {numberActionsT}.";
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Generates failed checks that correspond to output shapes incompatibilities between
|
|
/// the model and the BrainParameters.
|
|
/// </summary>
|
|
/// <param name="model">
|
|
/// The Barracuda engine model for loading static parameters
|
|
/// </param>
|
|
/// <param name="brainParameters">
|
|
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
|
|
/// </param>
|
|
/// <param name="isContinuous">
|
|
/// Whether the model is expecting continuous or discrete control.
|
|
/// </param>
|
|
/// <param name="modelActionSize">
|
|
/// The size of the action output that is expected by the model.
|
|
/// </param>
|
|
/// <returns>
|
|
/// A IEnumerable of string corresponding to the incompatible shapes between model
|
|
/// and BrainParameters.
|
|
/// </returns>
|
|
static IEnumerable<string> CheckOutputTensorShape(
|
|
Model model,
|
|
BrainParameters brainParameters,
|
|
ModelActionType isContinuous,
|
|
int modelActionSize)
|
|
{
|
|
var failedModelChecks = new List<string>();
|
|
if (isContinuous == ModelActionType.Unknown)
|
|
{
|
|
failedModelChecks.Add("Cannot infer type of Control from the provided model.");
|
|
return failedModelChecks;
|
|
}
|
|
if (isContinuous == ModelActionType.Continuous &&
|
|
brainParameters.VectorActionSpaceType != SpaceType.Continuous)
|
|
{
|
|
failedModelChecks.Add(
|
|
"Model has been trained using Continuous Control but the Brain Parameters " +
|
|
"suggest Discrete Control.");
|
|
return failedModelChecks;
|
|
}
|
|
if (isContinuous == ModelActionType.Discrete &&
|
|
brainParameters.VectorActionSpaceType != SpaceType.Discrete)
|
|
{
|
|
failedModelChecks.Add(
|
|
"Model has been trained using Discrete Control but the Brain Parameters " +
|
|
"suggest Continuous Control.");
|
|
return failedModelChecks;
|
|
}
|
|
var tensorTester = new Dictionary<string, Func<BrainParameters, TensorShape, int, string>>();
|
|
if (brainParameters.VectorActionSpaceType == SpaceType.Continuous)
|
|
{
|
|
tensorTester[TensorNames.ActionOutput] = CheckContinuousActionOutputShape;
|
|
}
|
|
else
|
|
{
|
|
tensorTester[TensorNames.ActionOutput] = CheckDiscreteActionOutputShape;
|
|
}
|
|
// If the model expects an output but it is not in this list
|
|
foreach (var name in model.outputs)
|
|
{
|
|
if (tensorTester.ContainsKey(name))
|
|
{
|
|
var tester = tensorTester[name];
|
|
var error = tester.Invoke(brainParameters, model.GetShapeByName(name), modelActionSize);
|
|
if (error != null)
|
|
{
|
|
failedModelChecks.Add(error);
|
|
}
|
|
}
|
|
}
|
|
return failedModelChecks;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Checks that the shape of the discrete action output is the same in the
|
|
/// model and in the Brain Parameters.
|
|
/// </summary>
|
|
/// <param name="brainParameters">
|
|
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
|
|
/// </param>
|
|
/// <param name="shape"> The tensor shape that is expected by the model</param>
|
|
/// <param name="modelActionSize">
|
|
/// The size of the action output that is expected by the model.
|
|
/// </param>
|
|
/// <returns>
|
|
/// If the Check failed, returns a string containing information about why the
|
|
/// check failed. If the check passed, returns null.
|
|
/// </returns>
|
|
static string CheckDiscreteActionOutputShape(
|
|
BrainParameters brainParameters, TensorShape shape, int modelActionSize)
|
|
{
|
|
var bpActionSize = brainParameters.VectorActionSize.Sum();
|
|
if (modelActionSize != bpActionSize)
|
|
{
|
|
return "Action Size of the model does not match. The BrainParameters expect " +
|
|
$"{bpActionSize} but the model contains {modelActionSize}.";
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Checks that the shape of the continuous action output is the same in the
|
|
/// model and in the Brain Parameters.
|
|
/// </summary>
|
|
/// <param name="brainParameters">
|
|
/// The BrainParameters that are used verify the compatibility with the InferenceEngine
|
|
/// </param>
|
|
/// <param name="shape"> The tensor shape that is expected by the model</param>
|
|
/// <param name="modelActionSize">
|
|
/// The size of the action output that is expected by the model.
|
|
/// </param>
|
|
/// <returns>If the Check failed, returns a string containing information about why the
|
|
/// check failed. If the check passed, returns null.</returns>
|
|
static string CheckContinuousActionOutputShape(
|
|
BrainParameters brainParameters, TensorShape shape, int modelActionSize)
|
|
{
|
|
var bpActionSize = brainParameters.VectorActionSize[0];
|
|
if (modelActionSize != bpActionSize)
|
|
{
|
|
return "Action Size of the model does not match. The BrainParameters expect " +
|
|
$"{bpActionSize} but the model contains {modelActionSize}.";
|
|
}
|
|
return null;
|
|
}
|
|
}
|
|
}
|