您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
182 行
6.0 KiB
182 行
6.0 KiB
# # Unity ML-Agents Toolkit
|
|
from typing import Dict, List, Deque, Any
|
|
import abc
|
|
|
|
from collections import deque
|
|
|
|
from mlagents_envs.logging_util import get_logger
|
|
from mlagents.model_serialization import export_policy_model, SerializationSettings
|
|
from mlagents.trainers.policy.tf_policy import TFPolicy
|
|
from mlagents.trainers.stats import StatsReporter
|
|
from mlagents.trainers.trajectory import Trajectory
|
|
from mlagents.trainers.agent_processor import AgentManagerQueue
|
|
from mlagents.trainers.brain import BrainParameters
|
|
from mlagents.trainers.policy import Policy
|
|
from mlagents.trainers.exception import UnityTrainerException
|
|
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class Trainer(abc.ABC):
|
|
"""This class is the base class for the mlagents_envs.trainers"""
|
|
|
|
def __init__(
|
|
self,
|
|
brain_name: str,
|
|
trainer_parameters: dict,
|
|
training: bool,
|
|
run_id: str,
|
|
reward_buff_cap: int = 1,
|
|
):
|
|
"""
|
|
Responsible for collecting experiences and training a neural network model.
|
|
:BrainParameters brain: Brain to be trained.
|
|
:dict trainer_parameters: The parameters for the trainer (dictionary).
|
|
:bool training: Whether the trainer is set for training.
|
|
:str run_id: The identifier of the current run
|
|
:int reward_buff_cap:
|
|
"""
|
|
self.param_keys: List[str] = []
|
|
self.brain_name = brain_name
|
|
self.run_id = run_id
|
|
self.trainer_parameters = trainer_parameters
|
|
self.summary_path = trainer_parameters["summary_path"]
|
|
self._stats_reporter = StatsReporter(self.summary_path)
|
|
self.is_training = training
|
|
self._reward_buffer: Deque[float] = deque(maxlen=reward_buff_cap)
|
|
self.policy_queues: List[AgentManagerQueue[Policy]] = []
|
|
self.trajectory_queues: List[AgentManagerQueue[Trajectory]] = []
|
|
self.step: int = 0
|
|
self.summary_freq = self.trainer_parameters["summary_freq"]
|
|
self.next_summary_step = self.summary_freq
|
|
|
|
@property
|
|
def stats_reporter(self):
|
|
"""
|
|
Returns the stats reporter associated with this Trainer.
|
|
"""
|
|
return self._stats_reporter
|
|
|
|
def _check_param_keys(self):
|
|
for k in self.param_keys:
|
|
if k not in self.trainer_parameters:
|
|
raise UnityTrainerException(
|
|
"The hyper-parameter {0} could not be found for the {1} trainer of "
|
|
"brain {2}.".format(k, self.__class__, self.brain_name)
|
|
)
|
|
|
|
@property
|
|
def parameters(self) -> Dict[str, Any]:
|
|
"""
|
|
Returns the trainer parameters of the trainer.
|
|
"""
|
|
return self.trainer_parameters
|
|
|
|
@property
|
|
def get_max_steps(self) -> int:
|
|
"""
|
|
Returns the maximum number of steps. Is used to know when the trainer should be stopped.
|
|
:return: The maximum number of steps of the trainer
|
|
"""
|
|
return int(float(self.trainer_parameters["max_steps"]))
|
|
|
|
@property
|
|
def get_step(self) -> int:
|
|
"""
|
|
Returns the number of steps the trainer has performed
|
|
:return: the step count of the trainer
|
|
"""
|
|
return self.step
|
|
|
|
@property
|
|
def should_still_train(self) -> bool:
|
|
"""
|
|
Returns whether or not the trainer should train. A Trainer could
|
|
stop training if it wasn't training to begin with, or if max_steps
|
|
is reached.
|
|
"""
|
|
return self.is_training and self.get_step <= self.get_max_steps
|
|
|
|
@property
|
|
def reward_buffer(self) -> Deque[float]:
|
|
"""
|
|
Returns the reward buffer. The reward buffer contains the cumulative
|
|
rewards of the most recent episodes completed by agents using this
|
|
trainer.
|
|
:return: the reward buffer.
|
|
"""
|
|
return self._reward_buffer
|
|
|
|
def save_model(self, name_behavior_id: str) -> None:
|
|
"""
|
|
Saves the model
|
|
"""
|
|
self.get_policy(name_behavior_id).save_model(self.get_step)
|
|
|
|
def export_model(self, name_behavior_id: str) -> None:
|
|
"""
|
|
Exports the model
|
|
"""
|
|
policy = self.get_policy(name_behavior_id)
|
|
settings = SerializationSettings(policy.model_path, policy.brain.brain_name)
|
|
export_policy_model(settings, policy.graph, policy.sess)
|
|
|
|
@abc.abstractmethod
|
|
def end_episode(self):
|
|
"""
|
|
A signal that the Episode has ended. The buffer must be reset.
|
|
Get only called when the academy resets.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def create_policy(self, brain_parameters: BrainParameters) -> TFPolicy:
|
|
"""
|
|
Creates policy
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def add_policy(
|
|
self, parsed_behavior_id: BehaviorIdentifiers, policy: TFPolicy
|
|
) -> None:
|
|
"""
|
|
Adds policy to trainer.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def get_policy(self, name_behavior_id: str) -> TFPolicy:
|
|
"""
|
|
Gets policy from trainer.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def advance(self) -> None:
|
|
"""
|
|
Advances the trainer. Typically, this means grabbing trajectories
|
|
from all subscribed trajectory queues (self.trajectory_queues), and updating
|
|
a policy using the steps in them, and if needed pushing a new policy onto the right
|
|
policy queues (self.policy_queues).
|
|
"""
|
|
pass
|
|
|
|
def publish_policy_queue(self, policy_queue: AgentManagerQueue[Policy]) -> None:
|
|
"""
|
|
Adds a policy queue to the list of queues to publish to when this Trainer
|
|
makes a policy update
|
|
:param policy_queue: Policy queue to publish to.
|
|
"""
|
|
self.policy_queues.append(policy_queue)
|
|
|
|
def subscribe_trajectory_queue(
|
|
self, trajectory_queue: AgentManagerQueue[Trajectory]
|
|
) -> None:
|
|
"""
|
|
Adds a trajectory queue to the list of queues for the trainer to ingest Trajectories from.
|
|
:param trajectory_queue: Trajectory queue to read from.
|
|
"""
|
|
self.trajectory_queues.append(trajectory_queue)
|